NATurE CHEmiCAl BioloGy
Articles
29. Turner, J. M. & Messenger, A. J. in Advances in Microbial Physiology Vol. 27
(eds A. H. Rose & D. W. Tempest) 211–275 (Academic Press, 1986).
30. Yagishita, K. Production of phenazine compounds by Streptomyces
griseoluteus. J. Antibiot. A 13, 83–96 (1960).
References
1. Lawrence, J. Selfsh operons: the evolutionary impact of gene clustering in
prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9, 642–648 (1999).
2. Mao, D., Bushin, L. B., Moon, K., Wu, Y. & Seyedsayamdost, M. R. Discovery
of scmR as a global regulator of secondary metabolism and virulence
in Burkholderia thailandensis E264. Proc. Natl Acad. Sci. USA 114,
E2920–E2928 (2017).
31. Ghoul, M., Bernard, T. & Cormier, M. Evidence that Escherichia coli
accumulates glycine betaine from marine sediments. Appl. Environ. Microbiol.
56, 551–554 (1990).
32. Dym, O. & Eisenberg, D. Sequence-structure analysis of FAD-containing
proteins. Protein Sci. 10, 1712–1728 (2001).
3. Wang, Z. & Cirino, P. C. New and improved tools and methods for enhanced
biosynthesis of natural products in microorganisms. Curr. Opin. Biotechnol.
42, 159–168 (2016).
4. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in
prokaryotes: quantifcation and classifcation. Annu. Rev. Microbiol. 55,
709–742 (2001).
5. Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution.
Nat. Rev. Genet. 9, 605–618 (2008).
6. Fischbach, M. A., Walsh, C. T. & Clardy, J. Te evolution of gene collectives:
how natural selection drives chemical innovation. Proc. Natl Acad. Sci. USA
105, 4601–4608 (2008).
7. Medema, M. H., Cimermancic, P., Sali, A., Takano, E. & Fischbach, M. A.
A systematic computational analysis of biosynthetic gene cluster evolution:
lessons for engineering biosynthesis. PLoS Comput. Biol. 10, e1004016 (2014).
8. Cai, X. et al. Entomopathogenic bacteria use multiple mechanisms for
bioactive peptide library design. Nat. Chem. 9, 379–386 (2017).
9. Yoshikuni, Y., Ferrin, T. E. & Keasling, J. D. Designed divergent evolution of
enzyme function. Nature 440, 1078–1082 (2006).
10. Nakashima, Y. et al. Structure function and engineering of multifunctional
non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis.
Nat. Commun. 9, 104 (2018).
11. Pan, G. et al. Discovery of the leinamycin family of natural products by
mining actinobacterial genomes. Proc. Natl Acad. Sci. USA 114,
E11131–E11140 (2017).
12. Wolpert, M., Gust, B., Kammerer, B. & Heide, L. Efects of deletions of
mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor.
Microbiology 153, 1413–1423 (2007).
13. Laursen, J. B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic
analogues, and biological activity. Chem. Rev. 104, 1663–1685 (2004).
14. Guttenberger, N., Blankenfeldt, W. & Breinbauer, R. Recent developments in
the isolation, biological function, biosynthesis, and synthesis of phenazine
natural products. Bioorg. Med. Chem. 25, 6149–6166 (2017).
15. Blankenfeldt, W. & Parsons, J. F. Te structural biology of phenazine
biosynthesis. Curr. Opin. Struct. Biol. 29, 26–33 (2014).
16. Mentel, M. et al. Of two make one: the biosynthesis of phenazines.
ChemBioChem 10, 2295–2304 (2009).
17. Price-Whelan, A., Dietrich, L. E. & Newman, D. K. Rethinking ‘secondary’
metabolism: physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2,
71–78 (2006).
18. Mavrodi, D. V., Blankenfeldt, W. & Tomashow, L. S. Phenazine compounds
in fuorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev.
Phytopathol. 44, 417–445 (2006).
19. Rui, Z. et al. Insights into a divergent phenazine biosynthetic pathway
governed by a plasmid-born esmeraldin gene cluster. Chem. Biol. 19,
1116–1125 (2012).
20. Wu, C. et al. Leucanicidin and endophenasides result from methyl-
rhamnosylation by the same tailoring enzymes in Kitasatospora sp. MBT66.
ACS Chem. Biol. 11, 478–490 (2016).
21. Lengyel, K. et al. Description of four novel species of Xenorhabdus, family
Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii
sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.
Syst. Appl. Microbiol. 28, 115–122 (2005).
22. Weber, T. et al. antiSMASH 3.0—a comprehensive resource for the
genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43,
W237–W243 (2015).
23. Tobias, N. J. et al. Natural product diversity associated with the
nematode symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2,
1676–1685 (2017).
24. Leisch, H., Morley, K. & Lau, P. C. K. Baeyer−Villiger monooxygenases: more
than just green chemistry. Chem. Rev. 111, 4165–4222 (2011).
25. White, S. W., Zheng, J., Zhang, Y.-M. & Rock, C. O. Te structural
biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74,
791–831 (2005).
26. Yu, S. et al. Atomic resolution structure of EhpR: phenazine resistance in
Enterobacter agglomerans Eh1087 follows principles of bleomycin/mitomycin
C resistance in other bacteria. BMC Struct. Biol. 11, 33 (2011).
27. Giddens, S. R., Feng, Y. J. & Mahanty, H. K. Characterization of a novel
phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol. Microbiol.
45, 769–783 (2002).
28. Myhren, L. E. et al. Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from
Streptosporangium sp. induces apoptosis selectively in myeloid leukemia cell
lines and patient cells. Mar. Drugs 11, 332–349 (2013).
33. Bode, E. et al. Biosynthesis and function of simple amides in Xenorhabdus
doucetiae. Environ. Microbiol. 19, 4564–4575 (2017).
34. Bode, E. et al. Simple “on-demand” production of bioactive natural products.
ChemBioChem 16, 1115–1119 (2015).
35. Chatterjee, S. et al. Phencomycin, a new antibiotic from a Streptomyces
species HIL Y-9031725. J. Antibiot. 48, 1353–1354 (1995).
36. Rix, U. et al. Te dynamic structure of jadomycin B and the amino
acid incorporation step of its biosynthesis. J. Am. Chem. Soc. 126,
4496–4497 (2004).
37. Colosimo, D. A. & MacMillan, J. B. Detailed mechanistic study of the
non-enzymatic formation of the discoipyrrole family of natural products.
J. Am. Chem. Soc. 138, 2383–2388 (2016).
38. Vidoudez, C. & Pohnert, G. Growth phase-specifc release of polyunsaturated
aldehydes by the diatom Skeletonema marinoi. J. Plankton Res. 30,
1305–1313 (2008).
39. Brameyer, S., Kresovic, D., Bode, H. B. & Heermann, R. Dialkylresorcinols
as bacterial signaling molecules. Proc. Natl Acad. Sci. USA 112,
572–577 (2015).
40. Mori, T. et al. Structural insight into the enzymatic formation of bacterial
stilbene. Cell Chem. Biol. 23, 1468–1479 (2016).
41. Bretschneider, T. et al. A ketosynthase homolog uses malonyl
units to form esters in cervimycin biosynthesis. Nat. Chem. Biol. 8,
154–161 (2012).
42. Proschak, A. et al. Biosynthesis of the insecticidal xenocyloins in
Xenorhabdus bovienii. ChemBioChem 15, 369–372 (2014).
43. Kwon, H.-J. et al. C-O bond formation by polyketide synthases. Science 297,
1327–1330 (2002).
44. Qiu, X. et al. Crystal structure of β-ketoacyl-acyl carrier protein synthase III:
a key condensing enzyme in bacterial fatty acid biosynthesis. J. Biol. Chem.
274, 36465–36471 (1999).
45. Lin, S., Van Lanen, S. G. & Shen, B. A free-standing condensation enzyme
catalyzing ester bond formation in C-1027 biosynthesis. Proc. Natl Acad. Sci.
USA 106, 4183–4188 (2009).
46. Imamura, N. et al. New anticancer antibiotics pelagiomicins,
produced by a new marine bacterium Pelagiobacter variabilis. J. Antibiot. 50,
8–12 (1997).
47. Singh, M. P. et al. Biological and mechanistic activities of
phenazine antibiotics produced by culture LL-14I352. J. Antibiot. 50,
785–787 (1997).
48. Burger, R. M. Cleavage of nucleic acids by bleomycin. Chem. Rev. 98,
1153–1169 (1998).
49. Nikaido, H. & Takatsuka, Y. Mechanisms of RND multidrug efux pumps.
Biochim. Biophys. Acta 1794, 769–781 (2009).
50. Wang, Y., Luo, Q., Zhang, X. & Wang, W. Isolation and purifcation of a
modifed phenazine, griseoluteic acid, produced by Streptomyces griseoluteus
P510. Res. Microbiol. 162, 311–319 (2011).
51. Moon, S. H. et al. Novel linear lipopeptide paenipeptins with potential for
eradicating bioflms and sensitizing gram-negative bacteria to rifampicin and
clarithromycin. J. Med. Chem. 60, 9630–9640 (2017).
52. Fischbach, M. A. & Clardy, J. One pathway, many products. Nat. Chem. Biol.
3, 353–355 (2007).
53. Clemons, P. A. et al. Quantifying structure and performance diversity for sets
of small molecules comprising small-molecule screening collections. Proc.
108, 6817–6822 (2011).
Natl Acad. Sci. USA
54. Shi, Y.-M. & Bode, H. B. Chemical language and warfare of bacterial natural
products in bacteria-nematode-insect interactions. Nat. Prod. Rep. 35,
309–335 (2018).
55. Hadjithomas, M. et al. IMG-ABC: a knowledge base to fuel discovery
of biosynthetic gene clusters and novel secondary metabolites. mBio 6,
e00932 (2015).
Acknowledgements
The authors are grateful to T. A. Wichelhaus from Universitätsklinikum Frankfurt for
the help with antibiotic susceptibility testing and the following colleagues from Goethe
Universität Frankfurt: K. A. J. Bozhüyük for constructive discussion, K. M. Pos for
providing the E. coli efflux pump mutant strains, and Y. Kopp and S. Mauer for the initial
analysis of the phenazine biosynthesis in X. szentirmaii. This work was supported by the
LOEWE program of the state of Hesse (LOEWE Schwerpunkt MegaSyn and LOEWE
Zentrum TBG). Y.-M.S. is supported by a Postdoctoral Research Fellowship from the
Alexander von Humboldt Foundation.