Letters
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 11 2731
Sch em e 1a
(4) (a) Nakamachi, Y.; Koshiba, M.; Nakazawa, T.; Hatachi, S.;
Saura, R.; Kurosaka, M.; Kusaka, H.; Kumagai, S. Specific
increase in enzymatic activity of adenosine deaminase 1 in
rheumatoid synovial fibroblasts. Arthritis Rheum. 2003, 48,
668-674. (b) Yuksel, H.; Akoglu, T. F. J . Serum and synovial
fluid adenosine deaminase activity in patients with rheumatoid
arthritis, osteoarthritis, and reactive arthritis. Ann. Rheum. Dis.
1988, 47, 492-495.
(5) (a) Smith, J . F.; Poplack, D. G.; Holiman, B. J .; Leventhal, B.
G.; Yarbro, G. Correlation of adenosine deaminase activity with
cell surface markers in acute lymphoblastic leukemia. J . Clin.
Invest. 1978, 62, 710-712. (b) Simpkins, H.; Stanton, A.; Davis,
B. H. Adenosine deaminase activity in lymphoid subpopulations
and leukemias. Cancer Res. 1981, 41, 3107-3110.
a
Reagents and conditions: (a) ArCH2Cl, Mg, LiCl, CuCl2, Et2O,
(6) Cronstein, B. N. Adenosine, An endogenous antiinflammatory
agent. J . Appl. Physiol. 1994, 76, 5-13.
-78 °C to room temp, overnight; (b) MsCl, Et3N, CH2Cl2, 0 °C, 1
h; (c) 4-imidazolecarboxamide, NaH, DMF, 70 °C, 24 h; (d)
Pd(OH)2, cyclohexene, EtOH, 90 °C, 30 min or TMSI, CHCl3, 0 °C
to room temp, overnight; (e) LiAlH4, Et2O, 0 °C, 30 min; (f) TBAF,
THF, 0 °C, 1 h; (g) TBSCl, imidazole, DMF, 0 °C to room temp,
overnight; (h) (1) MsCl, Et3N, CH2Cl2, 0 °C; (2) K2CO3, DMF, 60-
70 °C, 6 h.
(7) Ohta, A.; Sitkovsky, M. Role of G-protein-coupled adenosine
receptors in downregulation of inflammation and protection from
tissue damage. Nature 2001, 414, 916-920.
(8) (a) Rudolphi, K. A.; Schubert, P.; Parkinson, F. E.; Fredholm,
B. B. Neuroprotective role of adenosine in cerebral ischemia.
Trends Pharmacol. Sci. 1992, 13, 439-445. (b) Marquardt, D.
L.; Gruber, H. E.; Wasserman, S. I. Adenosine release from
stimulated mast-cells. Proc. Natl. Acad. Sci. U.S.A. 1984, 81,
6192-6196.
(9) Kameoka, J .; Tanaka, T.; Nojima, Y.; Schlossman, S. F.;
Morimoto, C. Direct association of adenosine deaminase with T
cell activation antigen, CD26. Science 1993, 261, 466-469.
(10) Franco, R.; Valenzuela, A.; Lluis, C.; Blanco, J . Enzymatic and
extraenzymatic role of ecto-adenosine deaminase in lymphocytes.
Immunol. Rev. 1998, 161, 27-42.
stereoisomers gave alcohol 9. The secondary alcohol
moiety of 9 was then converted to mesylate, and
displacement by SN2 reaction with 4-imidazolecarbox-
amide in the presence of NaH in DMF afforded 10.
Compounds 5 and 6 were obtained by debenzylation of
the corresponding 10.
The reduction of the ester group of 1123 with LiAlH4
in Et2O at 0 °C gave the primary alcohol 12. Removal
of the tert-butyldimethylsilyl (TBS) group with tetra-
butylammonium fluoride (TBAF) followed by selective
protection of the primary alcohol afforded the TBS
protected secondary alcohol 13. Compound 14 was
prepared by procedures similar to those for 10. After
removal of the TBS group of 14, the resulting alcohol
15 was converted to mesylate, followed by displacement
with the 2-naphthyloxy group in the presence of K2CO3
in DMF to afford 16. Deprotection of the benzyl group
afforded 7.
In summary, we report optimization efforts based on
4, and the discovery of potent and orally bioavailable
ADA inhibitors by a structure-based and metabolism-
directed design approach. As a result, we achieved not
only a drastic improvement in activity compared to that
of 4 but also a drastic improvement in oral bioavail-
ability compared to that of 3. Furthermore, 6, discovered
in this study, demonstrated in vivo efficacy in models
of inflammation and lymphoma. This is the first report
of in vivo efficacy for an ADA inhibitor after oral
administration.
(11) Baker, D. C.; Hanvey, J . C.; Hawkins, L. D.; Murphy, J .
Identification of the bioactive enantiomer of erythro-3-(adenine-
9-yl)-2-nonanol (EHNA), a semi-tight binding inhibitor of ad-
enosine deaminase. Biochem. Pharmacol. 1981, 30, 1159-1160.
(12) Agerwal, R. P.; Spector, T.; Parks, R. E. Tight-binding inhibitors
IV. Inhibition of adenosine deaminase by various inhibitors.
Biochem. Pharmacol. 1977, 26, 359-367.
(13) Cristalli, G.; Costanzi, S.; Lambertucci, C.; Lupidi, G.; Vittori,
S.; Volpini, R.; Camaioni, E. Adenosine deaminase: Functional
implications and different classes of inhibitors. Med. Res. Rev.
2001, 21, 105-128 and references therein.
(14) (a) McConnell, W. R.; Furner, R. L.; Hill, D. L. Pharmacokinetics
of 2′-deoxycoformycin in normal and L1210 leukemic mice. Drug
Metab. Dispos. 1979, 7, 11-13. (b) McConnell, W. R.; El-Dareer,
S. M.; Hill, D. L. Metabolism and disposition of erythro-9-(2-
hydroxy-3-nonyl)[14C] adenine in the rhesus monkey. Drug
Metab. Dispos. 1980, 8, 5-7.
(15) Brogden, R. N.; Sorkin, E. M. Pentostatin. A review of its
pharmacodynamic and pharmacokinetic properties, and thera-
peutic potential in lymphoproliferative disorders. Drugs 1993,
46, 652-677.
(16) Rafel, M.; Cervantes, F.; Beltran, J . M.; Zuazu, J .; Nieto, L. H.;
Rayon, C.; Talavera, J . G.; Montserrat, E. Deoxycoformycin in
the treatment of patients with hairy cell leukemia. Cancer 2000,
88, 352-357.
(17) Terasaka, T.; Nakanishi, I.; Nakamura, K.; Eikyu, Y.; Kinoshi-
ta,T.; Nishio, N.; Sato, A.; Kuno, M.; Seki, N.; Sakane, K.
Structure-based de novo design of non-nucleoside adenosine
deaminase inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 1115-
1118.
(18) Terasaka, T.; Kinoshita, T.; Kuno, M.; Nakanishi, I. A highly
potent non-nucleoside adenosine deaminase inhibitor: Efficient
drug discovery by intentional lead hybridization. J . Am. Chem.
Soc. 2004, 126, 34-35.
(19) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J .
Experimental and computational approaches to estimate solubil-
ity and permeability in drug discovery and development settings.
Adv. Drug Delivery Rev. 1997, 23, 3-25.
Ack n ow led gm en t. The authors are grateful to The
Chemo-Sero-Therapeutic Research Institute for the gift
of pentostatin. We thank Hiroyoshi Sakai for metabo-
lism studies and Dr. David Barrett for valuable com-
ments and help in the preparation of the manuscript.
(20) Schaeffer, H. J .; Schwender, C. F. Enzyme Inhibitors. 26.
Bridging hydrophobic and hydrophilic regions on adenosine
deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J . Med.
Chem. 1974, 17, 6-8.
(21) Niitsu, N.; Yamamoto-Yamaguchi, Y.; Kasukabe, T.; Okabe-
Kado, J . Umeda, M.; Honma, Y. Antileukemic efficacy of 2′-
deoxycoformycin in monocytic leukemia cells. Blood 2000, 96,
1512-1516.
(22) Terasaka, T.; Nakamura, K.; Seki, N.; Kuno, M.; Tsujimoto, S.;
Sato, A.; Nakanishi, I.; Kinoshita, T.; Nishio, N.; Okumura, H.;
Tsuji, K. WO 00/05217, 2000.
(23) Reetz, M. T.; Raguse, B.; Marth, C. F.; Hugel, H. M. A rapid
injection NMR study of the chelation controlled Mukaiyama
aldol addition: TiCl4 versus LiClO4 as the Lewis acid. Tetra-
hedron 1992, 48, 5731-5742.
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails and analytical data of compound synthesis and assay.
This material is available free of charge via the Internet at
http://pubs.acs.org.
Refer en ces
(1) Cristalli, G.; Costanzi, S.; Lambertucci, C.; Lupidi, G.; Vittori,
S.; Volpini, R.; Camaioni, E. Adenosine deaminase: Functional
implications and different classes of inhibitors. Med. Res. Rev.
2001, 21, 105-128.
(2) Resta, R.; Thompson, L. F. SCID: the role of adenosine deami-
nase deficiency. Immunol. Today 1997, 18, 371-374.
(3) Valenzuela, A.; Blanco, J .; Callebaut, C.; J acotot, E.; Lluis, C.;
Hovanessian, A. G.; Franco, R. Adenosine deaminase binding
to human CD26 is inhibited by HIV-1 envelope glycoprotein
gp120 and viral particles. J . Immunol. 1997, 158, 3721-3729.
J M0499559