10.1002/chem.201902962
Chemistry - A European Journal
RESEARCH ARTICLE
4392–4396; Angew. Chem. Int. Ed. 2017, 56, 4328–4332; c) J. Guo, X.-
Z. Shen, Z. Lu, Angew. Chem. 2017, 129, 630–633; Angew. Chem. Int.
Ed. 2017, 56, 615–618; d) C. Wu, W. J. Teo, S. Ge, ACS Catal. 2018, 8,
5896–5900.
Financial support from the Swedish Research Council (2016-
03897), the Foundation Olle Engkvist Byggmästare, the Berzelii
Center EXSELENT, and the Knut and Alice Wallenberg
Foundation is gratefully acknowledged.
[17] a) Y. Okuda, M. Sato, K. Oshima, H. Nozaki, Tetrahedron Lett. 1983,
24, 2015−2018; b) B. M. Trost, J.-i. Yoshida, Tetrahedron Lett. 1983, 24,
4895−4898; c) Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 1987, 28,
4715−4718; d) H. Sakaguchi, M. Ohashi, S. Ogoshi, Angew. Chem.
2018, 130, 334–338; Angew. Chem. Int. Ed. 2018, 57, 328−332; e) D.-
H. Tan, E. Lin, W.-W. Ji, Y.-F. Zeng, W.-X. Fan, Q. Li, H. Gao, H. Wang,
Adv. Synth. Catal. 2018, 360, 1032−1037; f) L. Zhang, M. Oestreich,
Org. Lett. 2018, 20, 8061.
Keywords: palladium • oxidation • tetrasubstituted olefins •
regio- and stereoselectivity • allenylsilane
[1]
[2]
a) C. Oger, L. Balas, T. Durand, J.-M. Galano, Chem. Rev. 2013, 113,
1313−1350; b) E.-i. Negishi, Z. Huang, G. Wang, S. Mohan, C. Wang,
H. Hattori, Acc. Chem. Res. 2008, 41, 1474−1485.
[18] a) N. T. Barczak, D. A. Rooke, Z. A. Menard, E. M. Ferreira, Angew.
Chem. 2013, 125, 7727–7730; Angew. Chem. Int. Ed. 2013, 52,
7579−7582; b) S. E. Denmark, J. H.-C. Liu, J. M. Muhuhi, J. Am. Chem.
Soc. 2009, 131, 14188–14189.
For reviews, see: a) A. B. Flynn, W. W. Ogilvie, Chem. Rev. 2007, 107,
4698−4745; b) M. Mori, Eur. J. Org. Chem. 2007, 4981−4993; c) M.
Shindo, K. Matsumoto, Top. Curr. Chem. 2012, 327, 1−32; d) S.-M.
Paek, Molecules 2012, 17, 3348−3358.
[19] For selective reviews, see: a) G. Rousseau, B. Breit, Angew. Chem.
2011, 123, 2498–2543; Angew. Chem. Int. Ed. 2011, 50, 2450–2494; b)
C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig,
P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U.
W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603–6743.
[20] a) J. Franzén, J.-E. Bäckvall, J. Am. Chem. Soc. 2003, 125, 6056–
6057; b) J. Piera, A. Persson, X. Caldentey, J.-E. Bäckvall, J. Am.
Chem. Soc. 2007, 129, 14120–14121; c) A. K. Å. Persson, T. Jiang, M.
Johnson, J.-E. Bäckvall, Angew. Chem. 2011, 123, 6279–6283; Angew.
Chem. Int. Ed. 2011, 50, 6155–6159; d) T. Jiang, T. Bartholomeyzik, J.
Mazuela, J. Willersinn, J.-E. Bäckvall, Angew. Chem. 2015, 127, 6122–
6125; Angew. Chem. Int. Ed. 2015, 54, 6024–6027; e) C. Zhu, B. Yang,
T. Jiang, J.-E. Bäckvall, Angew. Chem. 2015, 127, 9194–9197; Angew.
Chem. Int. Ed. 2015, 54, 9066–9069; f) C. Zhu, B. Yang, J.-E. Bäckvall,
J. Am. Chem. Soc. 2015, 137, 37, 11868–11871; g) C. Zhu, B. Yang, Y.
Qiu, J.-E. Bäckvall, Angew. Chem. 2016, 128, 14617–14620; Angew.
Chem. Int. Ed. 2016, 55, 14405–14408; h) D. Posevins, Y. Qiu, J.-E.
Bäckvall, J. Am. Chem. Soc. 2018, 140, 3210–3214.
[3]
For selected example, see: e) J. Dai, M. Wang, G. Chai, C. Fu, S. Ma,
J. Am. Chem. Soc. 2016, 138, 2532−2535; f) Z. He, S. Kirchberg, R.
Frꢀhlich, A. Studer, Angew. Chem. 2012, 124, 3759–3762; Angew.
Chem. Int. Ed. 2012, 51, 3699−3702; g) W. You, Y. Li, M. K. Brown,
Org. Lett. 2013, 15, 1610−1613; h) N. Gigant, F. Quintin, J.-E. Bäckvall,
J. Org. Chem. 2015, 80, 2796–2803.
[4]
R. M. Giusti, K. Iwamoto, E. E. Hatch, Ann Intern Med. 1995, 122,
778−788.
[5]
[6]
M. J. K. Harper, A. L. Walpole, Nature 1966, 212, 87.
For reviews, see: a) A. T. K. Koshvandi, M. M. Heravi, T. Momeni, Appl
Organometal Chem. 2018, 32, e4210; b) A. Biffis, P. Centomo, A. D.
Zotto, M. Zecca, Chem. Rev. 2018, 118, 2249–2295.
[7]
For selected examples, see: a) A. Krasovskiy, C. Duplais, B. H.
Lipshutz, Org. Lett. 2010, 12, 4742–4744; b) G. A. Molander, L. A.
Felix, J. Org. Chem. 2005, 70, 3950−3956; c) J. Barluenga, M. A.
Fernμndez, F. Aznar, C. Valdés, Chem. Eur. J. 2004, 10, 494–507.
For a recent review, see: J. H. Kim, Y. O. Ko, J. Bouffard, S.-g. Lee,
Chem. Soc. Rev. 2015, 44, 2489−2507.
[8]
[9]
[21] For recent reviews, see: a) Y. Minami, T. Hiyama, Acc. Chem. Res.
2016, 49, 67–77; b) B. Yang, Y. Qiu, J.-E. Bäckvall, Acc. Chem. Res.
2018, 51, 1520–1531; c) P. Gandeepan, C.-H. Cheng, Chem. Asian J.
2015, 10, 824–838. For selected examples, see; d) C. Zhu, B. Yang, Y.
Qiu, J.-E. Bäckvall, Chem. Eur. J. 2016, 22, 2939–2943; e) C. Zhu, B.
Yang, B. K. Mai, S. Palazzotto, Y. Qiu, A. Gudmundsson, A. Ricke, F.
Himo, J.-E. Bäckvall, J. Am. Chem. Soc. 2018, 140, 14324–14333.
[22] For selected application examples of allenylsilanes, see: a) J. Jin, S. M.
Weinreb, J. Am. Chem. Soc. 1997, 119, 5773–5784; b) R. Zeng, S. Wu,
C. Fu, S. Ma, J. Am. Chem. Soc. 2013, 135, 18284–18287; c) L. Song,
W. Yuan, S. Ma, Org. Chem. Front. 2017, 4, 1261−1265; d) W. Yuan, L.
Song, S. Ma, Angew. Chem. 2016, 128, 3192-3195; Angew. Chem. Int.
Ed. 2016, 55, 3140–3143.
E. Arundale, L. A. Mikeska, Chem. Rev. 1952, 51, 505−555; b) N. J.
Lawrence, J. Chem. Soc., Perkin Trans. 1 1998, 1, 1739−1750.
[10] For reviews of the Suzuki-Miyaura cross-coupling reaction, see: a) N.
Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; b) A. Suzuki,
Angew. Chem. 2011, 123, 6854–6869; Angew. Chem. Int. Ed. 2011,
50, 6722–6737; c) C. Amatore, G. L. Duc, A. Jutand, Chem. Eur. J.
2013, 19, 10082–10093; d) C. Zhu, S. Ma, Adv. Synth. Catal. 2014,
356, 3897–3911.
[11] For reviews, see: a) T. H. Chan, I. Fleming, Synthesis 1979, 761–786;
b) T. A. Blumen-kopf, L. E. Overman, Chem. Rev. 1986, 86, 857–873;
c) E. Langkopf, D. Schinzer, Chem. Rev. 1995, 95, 1375–1408; d) I.
Fleming, A. Barbero, D. Walter, Chem. Rev. 1997, 97, 2063–2192; e)
X.-Y. Du, Z. Huang, ACS Catal. 2017, 7, 1227–1243.
[23] For details, see the Supporting Information.
[24] The reaction of allenylsilane 1h, bearing a free OH group, did not afford
alkenylsilane product 3h, instead product 12 was isolated in 94% yield.
However, the comparison experiment using 1h’, with three methyl
groups on the silyl group, failed to give product 12’, only with 42%
recovery of the starting material. These observations suggest that the
coordination of the pending olefin to palladium is crucial for the overall
transformations, by forming Int-R1, which further proceeds via trans-
1,2-oxypalladation and β–H elimination to give 12 as the product.
[12] For selected examples, see: a) A. M. Tondreau, C. C. H. Atienza, K. J.
Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, P. J. Chirik, Science
2012, 335, 567–570; b) D.-J. Peng, Y.-L. Zhang, X.-Y. Du, L. Zhang,
X.-B. Leng, M. D. Walter, Z. Huang, J. Am. Chem. Soc. 2013, 135,
19154–19166; c) B. Cheng, P. Lu, H.-Y. Zhang, X.-P. Cheng, Z. Lu, J.
Am. Chem. Soc. 2017, 139, 9439–9442.
[13] a) T. Komiyama, Y. Minami, T. Hiyama, ACS Catal. 2017, 7, 631−651;
b) F. Foubelo, C. Nájera, M. Yus. Chem. Rec. 2016, 16, 2521–2533; c)
Y. Nakao, T. Hiyama, Chem. Soc. Rev. 2011, 40, 4893–4901.
[14] a) A. Hosomi, H. Sakurai, Tetrahedron Lett. 1976, 17, 1295–1298; b) S.
Yamasaki, K. Fujii, R. Wada, M. Kanai, M. Shibasaki, J. Am. Chem.
Soc. 2002, 124, 6536–6537.
[15] a) K. Tamao, N. Ishida, M. Kumada, J. Org. Chem. 1983, 48, 2120–
2122; b) I. Fleming, R. Henning, H. Plaut, J. Chem. Soc., Chem.
Commun. 1984, 0, 29–31.
[16] a) B. M. Trost, Z. T. Ball, J. Am. Chem. Soc. 2005, 127, 17644–17655;
b) W. J. Teo, C. Wang, Y. W. Tan, S. Ge, Angew. Chem. 2017, 129,
This article is protected by copyright. All rights reserved.