via bis-bidentate coordination of lanthanum ion by an aminoacyl
phosphate and the 2,3-diol of terminal ribosyl derivative.
assist in developing a chemical catalytic protocol for conveniently
synthesizing aminoacyl-tRNA esters for use in ribosomal forma-
tion of proteins with amino acids that are not specified by the
genetic code.15,30–32 We are currently investigating this process in
order to expand the scope of the methodology.
We thank NSERC Canada for support of this research through
a Discovery Grant and for a Postgraduate Scholarship to SH. Ash-
ley Trang assisted in the laboratory and Tara Andrusiak provided
preliminary studies in this system.
An aminoacyl ethyl phosphate is unusual in that it contains both
a free amino group and a reactive carboxyl group. Since a free
amine would normally be a more reactive nucleophile than water
or the hydroxyl groups of ribose ring, the free amino group should
react as a nucleophile toward the acyl group of another aminoacyl
phosphate ester to form an amide. At pH higher than the pKA of
the PheEP amino group (pKA = 7.8),25 this process would compete
with aminoacylation or hydrolysis. Thus, PheEP polymerizes to
form oligopeptides when incubated in 250 mM pH 8 HEPES
buffer. However, this is suppressed where the solution’s pH is below
the pKA of the amino group. At a lower pH, the N-protonated form
of PheEP is the major species and is not a nucleophile. When the
lanthanum-catalyzed reactions are carried out in pH 6 MES buffer,
polymerization is very slow compared to the rapid monoacylation.
In effect, the proton is a mobile protecting group (Scheme 2).
Notes and references
1 S. A. Robertson, C. J. Noren, S. J. Anthonycahill, M. C. Griffith and
P. G. Schultz, Nucleic Acids Res., 1989, 17, 9649–9660.
2 S. A. Robertson, J. A. Ellman and P. G. Schultz, J. Am. Chem. Soc.,
1991, 113, 2722–2729.
3 T. G. Heckler, L. H. Chang, Y. Zama, T. Naka and S. M. Hecht,
Tetrahedron, 1984, 40, 87–94.
4 A. R. Fersht and M. M. Kaethner,, Biochemistry, 1976, 15, 818–823.
5 R. S. Mulvey and A. R. Fersht, Biochemistry, 1978, 17, 5591–5597.
6 P. Berg, Annu. Rev. Biochem., 1961, 30, 293–322.
7 J. Cavarelli, G. Eriani, B. Rees, M. Ruff, M. Boeglin, A. Mitschler, F.
Martin, J. Gangloff, J. C. Thierry and D. Moras, EMBO J., 1994, 13,
327–337.
8 B. Delagoutte, D. Moras and J. Cavarelli, EMBO J., 2000, 19, 5599–
5610.
9 S. Eiler, A. C. Dock-Bregeon, L. Moulinier, J. C. Thierry and D. Moras,
EMBO J., 1999, 18, 6532–6541.
10 S. Tzvetkova and R. Kluger, J. Am. Chem. Soc., 2007, 129, 15848–
15854.
11 P. A. Clarke, Tetrahedron Lett., 2002, 43, 4761–4763.
12 P. A. Clarke, P. L. Arnold, M. A. Smith, L. S. Natrajan, C. Wilson and
C. Chan, Chem. Commun., 2003, 2588–2589.
13 P. A. Clarke, R. A. Holton and N. E. Kayaleh, Tetrahedron Lett., 2000,
41, 2687–2690.
14 P. A. Clarke, N. E. Kayaleh, M. A. Smith, J. R. Baker, S. J. Bird and C.
Chan, J. Org. Chem., 2002, 67, 5226–5231.
15 N. H. Duffy and D. A. Dougherty, Org. Lett., 2010, 12, 3776–3779.
16 R. W. Hoffmann, Synthesis, 2006, 3531–3541.
17 I. S. Young and P. S. Baran, Nat. Chem., 2009, 1, 193–205.
18 A. K. Yudin and R. Hili, Chem.–Eur. J., 2007, 13, 6539–6542.
19 X. Li and A. K. Yudin, J. Am. Chem. Soc., 2007, 129, 14152–14153.
20 P. Berg, J. Biol. Chem., 1958, 233, 608–611.
21 P. Berg, Annu. Rev. Biochem., 2008, 77, 14–44.
22 K. Tamura, Nucleic Acids Symp. Ser., 2008, 52, 415–416.
23 K. Tamura and P. Schimmel, Proc. Natl. Acad. Sci. U. S. A., 2003, 100,
8666–8669.
24 K. Tamura and P. Schimmel, Nucleic Acids Symp. Ser., 2004, 48, 269–
270.
25 R. Kluger, X. F. Li and R. W. Loo, Can. J. Chem., 1996, 74, 2395–2400.
26 R. Kluger, R. W. Loo and V. Mazza, J. Am. Chem. Soc., 1997, 119,
12089–12094.
Scheme 2 Reactions of aminoacyl phosphate esters in water.
27 B. E. Griffin, M. Jarman, C. B. Reese, J. E. Sulston and D. R. Trentham,
Biochemistry, 1966, 5, 3638–3649.
28 M. A. Rangelov, G. N. Vayssilov and D. D. Petkov, Int. J. Quantum
Chem., 2006, 106, 1346–1356.
29 C. B. Reese and D. R. Trentham, Tetrahedron Lett., 1965, 2467.
30 S. T. Cload, D. R. Liu, W. A. Froland and P. G. Schultz, Chem. Biol.,
1996, 3, 1033–1038.
31 J. C. Anderson, N. Wu, S. W. Santoro, V. Lakshman, D. S. King and
P. G. Schultz, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 7566–7571.
32 D. Mendel, J. A. Ellman, Z. Y. Chang, D. L. Veenstra, P. A. Kollman
and P. G. Schultz, Science, 1992, 256, 1798–1802.
In conclusion, we have demonstrated that efficient lanthanum-
promoted aminoacylation of ribonucleosides and ribonucleotides
can be achieved with an aminoacyl phosphate ester with a free
amino group. The methods outlined here overcome the problem
of low yields as seen in previous reports. These results also predict
that the protecting-group-free aminoacyl phosphate esters can
be utilized in the direct and selective aminoacylation at the 3¢-
terminal hydroxyl of oligonucleotides and tRNA. This should
678 | Org. Biomol. Chem., 2011, 9, 676–678
This journal is
The Royal Society of Chemistry 2011
©