J. Am. Chem. Soc. 2000, 122, 8335-8336
8335
metal centers.15,16 However, higher coordination of benzene has
never been achieved. It occurred to us that complexes in which
benzene is coordinated to more than three metals might be
prepared if two adequately chosen polydentate Lewis acid
molecules interact concomitantly with a unique benzene molecule.
The affinity of mercury for aromatic compounds is well docu-
mented. While electrophilic mercuration reactions17 and π-com-
plex formations18 substantiate the high affinity of Hg2+ cations
for arenes, weaker but measurable interactions also occur between
arenes and organomercurials.19 In this contribution, we report that
the reaction of benzene with trimeric o-tetrafluorophenylene
mercury (1)20 leads to the formation of a supramolecule that
contains sandwiched µ6-η2:η2:η2:η2:η2:η2-benzene.
µ6-η2:η2:η2:η2:η2:η2 As a New Bonding Mode for
Benzene
Mitsukimi Tsunoda and Franc¸ois P. Gabba¨ı*
Chemistry Department, Texas A&M UniVersity
3255 TAMU, College Station, Texas 77843-3255
ReceiVed May 15, 2000
With the advent of polyfunctional Lewis acids, the multiple
coordination of electron-rich species has flourished into an area
of relevance to both molecular recognition1-5 and catalysis.6-8
Examination of the factors that govern these chemistries has led
to the discovery of electrophilic complexes that feature electron-
rich species in unusual coordination environments and
geometries.3-5 In particular, both molecular and supramolecular
anionic complexes that contain tetra-, penta-, and hexa-coordinated
halide and pseudohalide anions bound to mercury polydentate
Lewis acids have been reported.3,4,9-11 Such phenomena are not
limited to the case of anions and also include neutral electron-
rich molecules that undergo multiple coordination to the binding
sites of polydentate Lewis acids. While organic substrates such
as nitriles,3 ketones,12 formamides,5,12 and sulfoxide13 have been
involved in such complexes, the interaction of arenes with main
group polydentate Lewis acids has never been studied.
Compound 1 dissolves in boiling benzene. Upon cooling,
followed by slow evaporation of the solvent, crystallization occurs
to afford a quantitative yield of 1‚C6H6 (2). Initial information
on the composition of 2 was gained from elemental analysis21
and thermogravimetric analysis which revealed that, between 70
and 110 °C, benzene loss occurred (6.5% of original weight). As
indicated by MAS 13C NMR spectroscopy, the benzene resonance
of 2 (133.3 ppm) is slightly deshielded when compared to free
benzene (128.0 ppm). Also, this resonance is sharp and suggests
that benzene in 2 exists in a very symmetrical environment. The
infrared spectrum of 2 was dominated by absorption bands of 1.
While the CdC stretching bands of benzene in 2 could not be
observed due to interference with those of 1, the spectrum
permitted the detection of an intense out-of-plane (oop) C-H
deformation band (mode ν4) at 716 cm-1 (525 cm-1 for 1‚C6D6;
νΗ/νD ) 1.36). When compared to that of free benzene, this oop
deformation is shifted to higher energy by δνoop 42 cm-1. It is
interesting to note that this shift is stronger than that observed
when benzene is adsorbed on metal surfaces such as Pd(111)
(δνoop 21 cm-1).22
In an effort to model the sorption of benzene on metal
surfaces,14 the synthesis of molecular complexes that feature
multiply bridging benzene molecules has been investigated. These
studies led to the isolation of a series of compounds in which
benzene interacts in a µ3-η2:η2:η2 fashion with three transition
(1) (a) Shriver, D. F.; Biallas, M. J. J. Am. Chem. Soc. 1967, 89, 1078-
1081. (b) Katz, H. E. J. Org. Chem. 1985, 50, 5027-5032. (c) Horner, J. H.;
Squatritto, P. J.; McGuire, N.; Riebenspies, J. P.; Newcomb, M. Organome-
tallics 1991, 10, 1741-1750. (d) Tschinkl, M.; Schier, A.; Riede, J.; Gabba¨ı,
F. P. Inorg. Chem. 1997, 36, 5706-5711. (e) Altmann, R.; Jurkschat, K.;
Schuermann, M.; Dakternieks, D.; Duthie, A. Organometallics 1998, 17,
5858-5866. (f) Uhl, W.; Hannemann, F. J. Organomet. Chem. 1999, 579,
18-23.
(2) (a) Katz, H. E. J. Org. Chem. 1989, 54, 2179-2183. (b) Nozaki, K.;
Yoshida, M.; Takaya, H. Bull. Chem. Soc. Jpn. 1996, 69, 2043-2052. (c)
Saied, O.; Simard, M.; Wuest, J. D. Organometallics 1998, 17, 1128-1133.
(d) Gabba¨ı, F. P.; Schier, A.; Riede, J.; Hynes, M. J. J. Chem. Soc., Chem.
Commun. 1998, 897-898.
(3) (a) Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267-276.
(b) Hawthorne, M. F. Pure Appl. Chem. 1994, 66, 245-254.
(4) Chistyakov, A. L.; Stankevich, I. V.; Gambaryan, N. P.; Struchkov, Y.
T.; Yanovsky, A. I.; Tikhonova, I. A.; Shur, V. B. J. Organomet. Chem. 1997,
536, 413-424.
The result of a single-crystal X-ray analysis23 of 2 revealed
extended stacks that run parallel to one another. Each stack
consists of nearly parallel, yet staggered molecules of 1 that
sandwich benzene molecules (Figure 1). These stacks are rather
(5) (a) Wuest, J. D. Acc. Chem. Res. 1999, 32, 81-89. (b) Vaugeois, J.;
Simard, M.; Wuest, J. D. Coord. Chem. ReV. 1995, 95, 55-73.
(6) Ooi, T.; Takahashi, M.; Maruoka, K. J. Am. Chem. Soc. 1996, 118,
11307-11308.
(15) Johnson, B. F. G.; Lewis, J.; Housecroft, C.; Gallup, M.; Martinelli,
M.; Braga, D.; Grepioni, F. J. Mol. Catal. 1992, 74, 61-72. Dyson, P. J.;
Johnson, B. F. G.; Lewis, J.; Martinelli, M.; Braga, D.; Grepioni, F. J. Am.
Chem. Soc. 1993, 115, 9062-9068.
(16) Wadepohl, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 247-262.
(17) Lau, W.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108, 6720-6732.
(18) (a) Lau, W.; Huffman, J. C.; Kochi, J. K. J. Am. Chem. Soc. 1982,
104, 5515-5517. (b) Damude, L. C.; Dean, P. A. W.; Sefcik, M. D.; Schaefer,
J. J. Organomet. Chem. 1982, 226, 105-114.
(19) Kuz’mina, L. G.; Struchkov, Yu. T. Croat. Chem. Acta 1984, 57, 701-
724 and references therein.
(20) Sartori, P.; Golloch, A. Chem. Ber. 1968, 101, 2004-2009.
(21) Anal. Calcd (found) for C24 H6F12Hg3: 25.64 (25.63); H, 0. 53 (0.51).
(22) (a) Grassian, V. H.; Muetterties, E. L. J. Phys. Chem. 1987, 91, 389-
396. (b) Eng, J., Jr.; Bent, B. E.; Fruhberger, B.; Chen, J. G. J. Phys. Chem.
B 1997, 101, 4044-4054.
(23) Crystal data for 2: C24H6F12Hg3, M 1124.06, rhombohedral, space
group R3hc, a ) 10.9331(13) Å, R ) 105.383(17)°, V ) 1133.0(2) Å3, Z ) 2,
Fcalc ) 3.295 g cm-3. Siemens SMART-CCD area detector diffractometer,
Mo KR radiation (λ ) 0.71069 Å), T ) -163 °C. Crystal size 0.14 × 0.12
× 0.03 mm3, ω-scan mode, measurement range 2.34 e θ e 24.97°, 651 unique
reflections, 587 reflections with I > 2σ(I), µ ) 20.389 mm-1. The structure
was solved by direct methods and refined by full-matrix least squares against
F2 using the SHELXTL/PC (version 5.10) package, 60 parameters, R1 )
0.0365, wR2 ) 0.0865 (all data).
(7) Lee, H.; Diaz, M.; Hawthorne, M. F. Tetrahedron Lett. 1999, 40, 7651-
7655.
(8) (a) Jia, L.; Yang, X.; Stern, C.; Marks, T. J. Organometallics 1994,
13, 3755-3757. (b) Williams, V. C.; Irvine, G. J.; Piers, W. E.; Li, Z.; Collins,
S.; Clegg, W.; Elsegood, M. R. J.; Marder, T. B. Organometallics 2000, 19,
1619-1621.
(9) Wuest, J. D.; Zacharie, B. Organometallics 1985, 4, 410-411.
(10) (a) Shur, V. B.; Tikhonova, I. A.; Yanovskii, A. I.; Struchkov, Y. T.;
Petrovskii, P. V.; Panov, S. Y.; Furin, G. G.; Vol’pin, M. E. J. Organomet.
Chem. 1991, 418, C29-C32. (b) Shur, V. B.; Tikhonova, I. A.; Yanovskii,
A. I.; Struchkov, Y. T.; Petrovskii, P. V.; Panov, S. Y.; Furin, G. G.; Vol’pin,
M. E. Dokl. Akad. Nauk SSSR 1991, 321, 1002-1004. (c) Shur, V. B.;
Tikhonova, I. A.; Dolgushin, F. M.; Yanovsky, A. I.; Struchkov, Y. T.;
Volkonsky, A. Y.; Solodova, E. V.; Panov, S. Y.; Petrovskii, P. V.; Vol’pin,
M. E. J. Organomet. Chem. 1993, 443, C19-C21.
(11) Lee, H.; Diaz, M.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem.,
Int. Ed. Engl. 2000, 39, 776-778.
(12) Tschinkl, M.; Schier, A.; Riede, J.; Gabbai F. P. Organometallics 1999,
18, 1747-1753.
(13) (a) Schmidbaur, H.; O¨ ller, H.-J.; Wilkinson, D. L.; Huber, B. Chem.
Ber. 1989, 122, 31-36. (b) Gabba¨ı, F. P.; Schier, A.; Riede, J.; Tschinkl M.
T. Angew. Chem., Int. Ed. Engl. 1999, 38, 3547-3549.
(14) Van Hove, M. A.; Somorjai, G. A. J. Mol. Catal. A: Chem. 1998,
131, 243-257.
10.1021/ja0016598 CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/11/2000