Paper
Catalysis Science & Technology
Table 4, entry 11: m.p 192–194 °C; 1H-NMR (400 Hz, CDCl3)
δ (ppm): 1.11 (s, 6H, CH3), 1.24 (s, 6H, CH3), 2.35–2.47 (m, 8H,
CH2), 3.77 (s, 6H, CH3), 5.43 (s, 1H, OH), 5.49 (s, 1H, CH), 6.34
(s, 2H, Ar–H), 11.5(s, 1H, OH), 12.0(s, 1H, OH).
7 (a) M. B. Gawande, P. S. Branco, I. D. Nogueira,
C. A. A. Ghumman, N. Bundaleski, A. Santos,
O. M. N. D. Teodoro and R. Luqued, Green Chem., 2013, 15,
682–689; (b) M. B. Gawande, A. K. Rathi, I. D. Nogueira,
R. S. Varma and P. S. Branco, Green Chem., 2013, 15,
1895–1899; (c) R. Cano, D. J. Ramón and M. Yus, J. Org. Chem.,
2010, 75, 3458–3460; (d) V. Polshettiwar and R. S. Varma,
Tetrahedron, 2010, 66, 1091–1097; (e) M. B. Gawande,
A. K. Rathi, I. D. Nogueira, C. A. A. Ghumman, N. Bundaleski,
O. M. N. D. Teodoro and P. S. Branco, ChemPlusChem,
2012, 77, 865–871; (f) J. Feng, L. Sua, Y. Maa, C. Ren, Q. Guo
and X. Chen, Chem. Eng. J., 2013, 221, 16–24; (g) J. Mondal,
T. Sen and A. Bhaumik, Dalton Trans., 2012, 41, 6173–6181; (h)
F. Shi, M. K. Tse, M. M. Pohl, A. Bruckner, S. Zhang and
M. Beller, Angew. Chem., Int. Ed., 2007, 46, 8866–8868; (i)
S. R. Kale, S. S. Kahandal, M. B. Gawande and R. V. Jayaram,
RSC Adv., 2013, 3, 8184–8192.
Conclusion
In conclusion, we developed an efficient, simple, green method
for the synthesis of 2-amino-4-(phenyl)-5,6,7,8-tetrahydro-7,7-
dimethyl-5-oxo-4H-chromene-3-carbonitrile derivatives and
2,2′-arylmethylene
bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-
1-one) derivatives using CoFe2O4 nanoparticles as a catalyst.
The merits of the present work are as follows: 1) high
efficiency, clean reaction, simplicity, short reaction time,
versatility, high yields, chemoselectivity, non-chromatography
technique. 2) Separation and recrystallisation of product
occurs simultaneously, which reduces the use of organic sol-
vents. 3) The catalyst is efficient, sustainable, stable and recy-
clable. 4) The catalyst is cheap and formed in single step, no
coating/loading material or functionalisation is used. 5) The
catalyst has small size, high surface area and magnetic proper-
ties. These features make the present work useful from indus-
trial, economical and environmental points of view.
8 (a) A. H. Lu, E. L. Salabas and F. Schuth, Angew. Chem., Int.
Ed., 2007, 46, 1222–1244; (b) S. Shylesh, V. Schunemann and
W. R. Thiel, Angew. Chem., Int. Ed., 2010, 49, 3428–3459; (c)
C. W. Lim and I. Su Lee, Nano Today, 2010, 5, 412–434.
9 A. Rostami, B. Atashkar and H. Gholami, Catal. Commun.,
2013, 37, 69–74.
10 (a) P. D. Stevens, G. Li, J. Fan, M. Yen and Y. Gao, Chem.
Commun., 2005, 4435–4437; (b) H. Yoon, S. Ko and J. Jang,
Chem. Commun., 2007, 1468–1470; (c) D. Guin, B. Baruwati
and S. V. Manorama, Org. Lett., 2007, 9, 1419–1421; (d)
V. Polshettiwar, B. Baruwati and R. S. Varma, Green Chem.,
2009, 11, 127–131.
Acknowledgements
We are thankful to SAIF, Panjab University Chandigarh for
1
FT-IR, TEM, H-NMR, 13C-NMR, XRD for IIT Ropar and CIL,
IIT Roorkee for VSM. One of the authors (G. K.) is thankful to
MHRD and NIT Jalandhar for providing the research
fellowship.
11 Z. Wang, P. Xiao, B. Shen and N. He, Colloids Surf., A,
2006, 276, 116–121.
12 P. W. Sellwood, Magnetochemistry, Interscience, London 1956.
13 M. B. Gawande, V. D. B. Bonifacio, R. Luque, P. S. Branco
and R. S. Varma, Chem. Soc. Rev., 2013, 42, 5522–5551.
14 D. Kumar, N. M. Kumar, G. Patel, S. Gupta and R. S. Varma,
Tetrahedron Lett., 2011, 52, 1983–1986.
References
1 (a) M. B. Gawande, P. S. Brancoa and R. S. Varma, Chem.
Soc. Rev., 2013, 42, 3371–3393; (b) K. V. S. Ranganath and
F. Glorius, Catal. Sci. Technol., 2011, 1, 13–22.
2 (a) R. J. White, R. Luque, V. L. Budarin, J. H. Clark and
D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 481–494; (b)
A. Schatz, T. R. Long, R. N. Grass, W. J. Stark, P. R. Hanson
and O. Reiser, Adv. Funct. Mater., 2010, 20, 4323–4328.
3 (a) M. B. Gawande, A. K. Rathi, P. S. Branco, T. M. Potewar,
A. Velhinho, I. D. Nogueira, A. Tolstogouzov, C. Amjad,
A. Ghumman and O. M. N. D. Teodoro, RSC Adv., 2013, 3,
3611–3617; (b) M. B. Gawande, S. N. Shelke, A. Rathi,
P. S. Branco and R. K. Pandey, Appl. Organomet. Chem.,
2012, 26, 395–400; (c) M. B. Gawande, V. D. B. Bonifácio,
R. S. Varma, I. D. Nogueira, N. Bundaleski, C. Amjad,
A. Ghumman, O. M. N. D. Teodoro and P. S. Branco, Green
Chem., 2013, 15, 1226–1231.
15 C. J. Li and L. Chen, Chem. Soc. Rev., 2006, 35, 68–82.
16 (a) L. Alvey, S. Prado, V. Huteau, B. Saint-Joanis, S. Michel,
M. Koch, S. T. Cole, F. Tillequin and Y. L. Janin, Bioorg.
Med. Chem., 2008, 16, 8264–8272; (b) T. Narender, Shweta
and S. Gupta, Bioorg. Med. Chem. Lett., 2004, 14, 3913–3916;
(c) V. Lakshmi, K. Pandey, A. Kapil, N. Singh, M. Samant
and A. Dube, Phytomedicine, 2007, 14, 36–42; (d) D. Kumar,
V. B. Reddy, S. Sharad, U. Dube and S. Kapur, Eur. J. Med.
Chem., 2009, 44, 3805–3809; (e) M. C. Yimdjo, A. G. Azebaze,
A. E. Nkengfack, A. M. Meyer, B. Bodo and Z. T. Fomum,
Phytochemistry, 2004, 65, 2789–2795; (f) Z. Q. Xu, K. Pupek,
W. J. Suling, L. Enache and M. T. Flavin, Bioorg. Med. Chem.,
2006, 14, 4610–4626; (g) L. Alvey, S. Prado, B. Saint-Joanis,
S. Michel, M. Koch, S. T. Cole, F. Tillequin and Y. L. Janin,
Eur. J. Med. Chem., 2009, 44, 2497–2505.
4 A. K. Gupta and M. Gupta, Biomaterials, 2005, 26,
3995–4021.
5 (a) S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio,
A. Demourgues, J. Portier, E. Pollert and E. Duguet, Prog.
Solid State Chem., 2006, 34, 237–247; (b) Z. Li, L. Wei,
M. Y. Gao and H. Lei, Adv. Mater., 2005, 17, 1001–1005.
6 T. Hyeon, Chem. Commun., 2003, 927–934.
17 G. P. Ellis, In the Chemistry of Heterocyclic of Compounds.
Chromenes, Harmones and Chromones, John Wiley, New
York, NY, 1977, chapter II, pp. 1113.
18 (a) E. A. A. Hafez, M. H. Elnagdi, A. G. A. Elagamey and
F. M. A. A. El-Taweel, Heterocycles, 1987, 26, 903–907; (b)
150 | Catal. Sci. Technol., 2014, 4, 142–151
This journal is © The Royal Society of Chemistry 2014