5694 J . Org. Chem., Vol. 65, No. 18, 2000
Razavi and Polt
F igu r e 1. Major indolizidine alkaloids.
F igu r e 3. Enantiodivergent approach allows for the synthesis
of various indolizidines from common intermediates and
starting materials.
of simple â-amino alcohols (sphingosines) from their
corresponding amino acids in a stereoselective fashion.20
This method has since been extended to the synthesis of
sphingosine analogues,21 and heterocycles such as N-
methyl-D-fucosamine, deoxyfuconojirimycin, and imi-
nolyxitols.22
F igu r e 2. Biosynthesis of swainsonine.
In principle, all the stereoisomers of swainsonine can
be accessed by an enantiodivergent modification of this
amino acid-based approach (Figure 3): (1) Starting with
D- vs L-serine inverts the enantiomeric series; (2) the
reductive-alkenylation methodology can furnish either
the threo- or erythro-â-amino alcohols from the fully
protected serine Schiff base; (3) substrate-directed cis-
vs trans-diol formation could alter the hydroxyl config-
uration in the pyrrolidine ring; and (4) chelation-
controlled vs Felkin-Ahn addition of the allyl moiety
could, in principle, invert the hydroxyl configuration in
the piperidine ring.
Syn th esis of th e P yr r olid in e Segm en t. Construc-
tion of the aza-furanose skeleton required the addition
of a vinyl group to D-serine in a manner that would afford
the enantiomerically pure threo â-amino alcohol (syn or
like product) in good yield.23 To this end, we relied on
the reductive-alkenylation methodology which has previ-
ously worked well with more-substituted sp2-hybridized
carbanions.
acid15 and D-tartaric acid16 have been used as sources of
chirality. The fact that the four contiguous chiral centers
of swainsonine resemble those of manno- and gluco-
sugars has led to the utilization of these carbohydrates
as starting materials for a large number of syntheses.17
However, the preexisting chiral centers can limit the
scope of carbohydrate-based methods. In addition, the
need for orthogonal protection of the hydroxyl groups
confines these methods to arduous and redundant se-
quences of protecting group manipulations that reduces
the efficiency and lengthens this approach. In light of
these limitations, the need for non-carbohydrate-based
syntheses has become more apparent, and a few asym-
metric syntheses, starting from achiral substrates, have
been published.18 In view of the fact that the biosynthetic
pathway to swainsonine begins with L-lysine, it is
surprising to note that very few approaches to the total
synthesis of this compound from an amino acid precursor
have been reported.19
The starting material 1, conveniently prepared from
D-serine,21,24 was treated sequentially with i-Bu5Al2H (1:1
mixture of i-Bu2AlH and i-Bu3Al in hexanes) and vinyl-
magnesium bromide in THF/CH2Cl2 at -78 °C. This
provided a chromatographically separable mixture25 of
diastereomers (2a :2b, 1.7:1) in 76% yield (Scheme 1). We
attribute the lack of stereoselectivity to the presence of
THF in the reaction mixture, which destroys the five-
membered chelation template that is essential for threo-
selectivity.20 In fact, the reductive alkenylation method-
ology has been shown to be threo-selective (∼8:1) when
the carbanion is prepared in Et2O, and extremely selec-
As part of a program directed at efficient chemical
syntheses of enantiomerically pure glycosidase inhibitors
such as (-)-swainsonine, we have synthesized (-)-8-epi-
swainsonine and (+)-1,2-di-epi-swainsonine from D-
serine. Previous communications describe the synthesis
(15) Naruse, M.; Aoyagi, S.; Kibayashi, C. J . Org. Chem. 1994, 59,
1358.
(16) Dener, J . M.; Hart, D. J .; Ramesh, S. J . Org. Chem. 1988, 53,
6022.
(17) (a) Suami, T.; Tadano, K.; Iimura, Y. Chem. Lett. 1984, 513.
(b) Ali, M. H.; Hough, L.; Richardson, A. C. J . Chem. Soc., Chem.
Commun. 1984, 447. (c) Fleet, G. W. J .; Gough, M. J .; Smith, P. W.
Tetrahedron Lett. 1984, 25, 1853. (d) Yasuda, N.; Tsutsumi, H.; Takaya,
T. Chem. Lett. 1984, 1201. (e) Suami, T.; Tadano, K.; Iimura, Y.
Carbohydr. Res. 1985, 136, 67. (f) Ali, M. H.; Hough, L.; Richardson,
A. C. Carbohydr. Res. 1985, 136, 225. (g) Setoi, H.; Takeno, H.;
Hashimoto, M. J . Org. Chem. 1985, 50, 3948. (h) Bashyai, B. P.; Fleet,
G. W. J .; Gough, M. J .; Smith, P. W. Tetrahedron 1987, 43, 3083. (i)
Carpenter, N. M.; Fleet, G. W. J .; diBello, I. C.; Winchester, B.; Fellows,
L. E.; Nash, R. J . Tetrahedron Lett. 1989, 30, 7261. (j) Bennett, R. B.,
III.; Choi, J .-R.; Montgomery, W. D.; Cha, J . K. J . Am. Chem. Soc.
1989, 111, 2580. (k) Pearson, W. H.; Lin, K.-C. Tetrahedron Lett. 1990,
31, 7571. (l) Miller, S. A.; Chamberlin, A. R. J . Am. Chem. Soc. 1990,
112, 8100. (m) Kang, S. H.; Kim, G. T. Tetrahedron Lett. 1995, 36,
5049. (n) Gonzalez, F. B.; Barba, A. L.; Espina, M. R. Bull. Chem. Soc.
J pn. 1992, 65, 567.
(18) (a) Adams, C. E.; Walker, F. J .; Sharpless, K. B. J . Org. Chem.
1985, 50, 420. (b) Honda, T.; Hoshi, M.; Kanai, K.; Tsubuki, M. J .
Chem. Soc., Perkin Trans. 1 1994, 2091. (c) Angermann, J .; Homann,
K.; Reissig, H.-U.; Zimmer, R. Synlett 1995, 1014. (d) Zhou, W.-S.; Xie,
W.-G.; Lu, Z.-H.; Pan, X.-F. J . Chem. Soc., Perkin Trans. 1 1995, 2599.
(e) Hunt, J . A.; Roush, W. R. J . Org. Chem. 1997, 62, 1112.
(19) (a) Ikota, N.; Hanaki, A. Chem. Pharm. Bull. 1987, 35, 2140,
(b) Ikota, N.; Hanaki, A. Chem. Pharm. Bull. 1990, 38, 2712.
(20) Polt, R.; Peterson, M. A.; DeYoung, L. J . Org. Chem. 1992, 57,
5469.
(21) Mitchell, S. A.; Oates, B. D.; Razavi, H.; Polt, R. J . Org. Chem.
1998, 63, 8837.
(22) (a) Sames, D.; Polt, R. J . Org. Chem. 1994, 59, 4596. (b) Sames,
D.; Polt, R. Synlett 1995, 552. (c) Razavi, H.; Polt, R. Tetrahedron Lett.
1998, 39, 3371.
(23) Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, H.; Oguchi, Y.;
Uyehara, T.; Yamamoto, Y. J . Org. Chem. 1991, 56, 4370-4382. (b)
Angle, S. R.; Henry, R. M. J . Org. Chem. 1997, 62, 8549-8555. (c)
Angle, S. R.; Breitenbucher, J . G. Tetrahedron Lett. 1993, 34, 3985-
3988. (d) Coleman, R. S.; Kong, J .-S.; Richardson, T. E. J . Am. Chem.
Soc. 1999, 121, 9088-9095. (e) Coleman, R. S.; Carpenter, A. J .
Tetrahedron Lett. 1992, 33, 1697-700.
(24) (a) O’Donnell, M. J .; Polt, R. L. J . Org. Chem. 1982, 47, 2663.
(b) Polt, R., Chapter
9 in Amino Acid Derivatives: A Practical
Approach, Barrett, G. C., Ed., Oxford University Press: Oxford, UK,
2000.
(25) Wijayaratne, T.; Collins, N.; Li, Y.; Bruck, M. A.; Polt, R. Acta
Crystallogr. 1993, B49, 316.