Journal of the American Chemical Society
Page 6 of 8
(5)
For seminal examples of stereodivergent dual catalysis
contrasting catalysis behaviors. Through a combination of
control experiments, progress monitoring experiments
and kinetic isotope studies, it has been possible to vali-
date the initial mechanistic hypothesis that merges ener-
gy transfer (ET) and subsequent single electron transfer
(SET) processes. In view of the current interest in organic
photocatalysis, and the wealth of information pertaining
to light-induced activation modes, it is envisaged that this
guiding principle will evolve to complement the antipodal
field of synergistic catalysis.
1
2
3
4
5
6
7
8
see (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M.,
Science, 2013, 340, 1065-1068. b) Krautwald, S.; Schafroth, M. A.;
Sarlah, D.; Carreira, E. M., J. Am. Chem. Soc. 2014, 136, 3020-3023.
For a recent perspective see: Schindler, C. S.; Jacobsen, E. N.;
Science, 2013, 340, 1052-1053.
(6)
For a recent discussion of orthogonal tandem catalysis
see: Lohr, T. L.; Marks, T. J., Nat. Chem., 2015, 7, 477-482.
(7)
(8)
S. E.; Soejima, T.; Aliaga, C. E.; Somorjai, G. A.; Yang, P., Nat.
Chem., 2015, 3, 372-376.
Shi, S.-L.; Buchwald, S. L., Nat. Chem. 2015, 7, 38-44.
Yamada, Y.; Tsung, C.-K.; Huang, W.; Huo, Z.; Habas,
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9)
(a) Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L., J. Org. Chem.,
2014, 79, 10434-10446. (b) For recent reviews on organic photoca-
talysis see: Yoon, T. P.; Ischay; M. A.; Du, J., Nature Chemistry
2010, 2, 527-532. Narayanam, J. M. R.; Stephenson, C. R. J., Chem.
Soc. Rev. 2011, 40, 102–113. Xuan, J.; Xiao, W., Angew. Chem. Int.
Ed. 2012, 51, 6828-6838; Angew. Chem. 2012, 124, 6934-6944. Pri-
er, C. K.; Rankic, D. A.; MacMillan, D. W. C., Chem. Rev. 2013,
113, 5322–53263. Koike, T.; Akita, M., Synlett 2013, 24, 2492–2505.
Yoon, T. P.; Stephenson, C. R. J., Adv. Synth. Catal. 2014, 356,
2739-2739. Schultz, D. M.; Yoon, T. P., Science 2014, 343, 1239176.
Nicewicz, D. A.; Nguyen, T. M., ACS Catal. 2014, 4, 355-360.
Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T., Angew.
Chem. Int. Ed. 2015, 54, 3872-3890; Angew. Chem. 2015, 127, 3944-
3963.
ASSOCIATED CONTENT
Supporting Information
NMR spectra, absorption spectra, experimental procedures
and mechanistic studies. Supporting information is available
AUTHOR INFORMATION
Corresponding Author
*ryan.gilmour@uni-muenster.de
(10)
Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Modern
Molecular Photochemistry of Organic Molecules (2010).
(11)
(12)
Massey, V., Biochem. Soc. Trans., 2000, 28, 283-296.
Peng, X. M.; Damu, G. L.; Zhou, C., Curr. Pharm. Des.
Notes
The authors declare no competing financial interest.
2013, 19, 3884-3930.
(13)
655-661.
(14)
Edwards, K. G.; Stoker, J. R., Phytochemistry, 1967, 6,
(a) Matern, U.; Lüerm, P.; Kreusch, D., Biosynthesis of
Author Contributions
Coumarins (1999) in Comprehensive Natural Product Chemistry,
Vol. 1: Polyketides and other Secondary Metabolites (Ed.: U.
Sankawa) Pergamon, Oxford.
All authors have given approval to the final version of the
manuscript.
(15)
(a) Estévez-Braun, A.; González, A. G., Nat. Prod. Rep.,
1997, 14, 465-475. (b) O’Kennedy, R.; Thomas, R. D., Eds. 1997,
Coumarins: Biology, Applications, and Mode of Action; Wiley:
Chichester, UK.
ACKNOWLEDGMENT
We acknowledge generous financial support from the WWU
Münster, the Deutsche Forschungsgemeinschaft (SFB 858,
and Excellence Cluster EXC 1003 “Cells in Motion – Cluster of
Excellence”), and the Fonds der Chemischen Industrie (FCI
Fellowship to J. B. Metternich). This study is dedicated to
Prof. Dr. Steven V. Ley FRS on the occasion of his 70th birth-
day.
(16)
Boeck, F.; Blazejak, M.; Anneser, M. R.; Hintermann,
L., Beilstein J. Org. Chem., 2012, 8, 1630-1638, and references cited
therein.
(17)
1960, 41, 538-541. (b) Metternich, J. B.; Gilmour, R., J. Am. Chem.
Soc. 2015, 137, 11254–11257.
(18)
2117-2125. (b) Surdhar, P. S.; Armstrong, D., Int. J. Radiat. Biol.
1987, 52, 419-435. (c) Fukuzumi, S.; Kuroda, S.; Tanaka, T., J. Am.
Chem. Soc. 1985, 107, 3020-3027. (d) Murahashi, S.; Oda, T.;
Masui, Y., J. Am. Chem. Soc. 1989, 111, 5002-5003. (e) Martin, C.
B.; Tsao, M.-L.; Hadad, C. M.; Platz, M. S., J. Am. Chem. Soc.
2002, 124, 7226-7234. (f) Imada, Y.; Iida, H.; Ono, S.; Murahashi,
S.-I., J. Am. Chem. Soc. 2003, 125, 2868-2869. (g) Megerle, U.;
Wenninger, M.; Kutta, R.-J.; Lechner, R.; König, B.; Dick, B.;
Riedle, E., PhysChemChemPhys 2011, 13, 8869-8880. (h) Dadova,
J.; Kümmel, S.; Feldmeier, C.; Cibulkova, J.; Pazout, R.; Maixner,
J.; Gschwind, R. M.; König, B.; Cibulka, R., Chem. Eur. J. 2013, 19,
1066-1075. (i) Feldmeier, C.; Bartling, H.; Magerl, K.; Gschwind,
R. M., Angew. Chem. Int. Ed. 2015, 54, 1347-1351; Angew. Chem.
2015, 127, 1363-1367.
(a) Posthuma, J.; Berends, W., Biochim. Biophys. Acta
(a) Land, E. J.; Swallow, A. J., Biochemistry 1969, 8,
REFERENCES
(1)
(a) Wender, P. A., Nat. Prod. Rep., 2014, 31, 433-440. (b)
Wender, P. A.; Miller, B. L., Nature, 2009, 460, 197–201. (c) Trost,
B. M., Science 1996, 245, 1471-1477.
(2)
Walji, A. M.; MacMillan, D. W. C., Synlett, 2007, 10,
1477-1489.
(3)
(a) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.;
MacMillan, D. W. C., Proc. Nat. Acad. Sci. USA, 2004, 101, 5482-
5487. (b) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D.
W. C., J. Am. Chem. Soc., 2005, 127, 15051-15053. (c) For an exam-
ple of enantioselective organo-SOMO cascade cycloadditions
see: Jui, N. T.; Lee, E. C. Y.; MacMillan, D. W. C., J. Am. Chem.
Soc., 2010, 132, 10015-10017.
(19)
(a) For a discussion of the reaction of carboxylic acid
anions with (_)-riboflavin see Heelis, P. F., Chem. Soc. Rev. 1982,
11, 15-39; (b) For a recent catalytic, dehydrogenative lactonization
of 2-arylbenzoic acids to benzocoumarins invoking this interme-
(4)
For a review of synergistic catalysis see: Allan, A. E.;
MacMillan, D. W. C., Chem. Sci., 2012, 3, 633-658.
ACS Paragon Plus Environment