6284
In summary, novel procedures for the total synthesis of the sulfated hexasaccharides 1 and 2
have been developed. These procedures will also provide a practical approach toward the
synthesis of a series of branched Core 2 type linked oligosaccharides, which contain allyl or other
functional groups at the anomeric position, suitable for attachment to protein for immunological
studies.
Acknowledgements
These investigations were supported by Grant Nos. CA-63218 and CA-35329 (K.L.M.), and in
part by CA-16056 (RPCI-NMR facility) awarded by the National Cancer Institute.
References
1. Stults, C. L. M.; Sweeley, C. C.; Macher, B. A. Methods Enzymol. 1989, 179(14), 167.
2. Livingston, P. O.; Zhang, S.; Lloyd, K. O. Cancer Immunol. Immunother. 1997, 45, 1.
3. Toyokumi, T.; Singhal, A. K. Chem. Soc. Rev. 1995, 231.
4. Seeberger, P. H.; Bilodeau, M. T.; Danishefsky, S. J. Aldrichim. Acta, 1997, 30, 75.
5. Chandrasekaran, E. V.; Jain, R. K.; Matta, K. L. J. Biol. Chem. 1992, 267, 23806.
6. Yuen, C.; Lawson, A. M.; Chai, W.; Larking, M.; Stoll, M. S.; Stuart, A. C.; Sullivan, F. X.; Ahern, T. J.; Feizi, T.
Biochemistry 1992, 31, 9126.
7. Chandrasekaran, E. J.; Jain, R. K.; Matta, K. L. Glycobiology 1997, 7, 753.
8. Chandrasekaran, E. V.; Jain, R. K.; Rhodes, J. M.; Chawda, R.; Piskorz, C.; Matta, K. L. Glycoconjugate J. 1999,
16, 523±536.
9. Capon, C.; Wieruszeski, J. M.; Lemoine, J.; Byrd, J. C.; Leer, H.; Kim, Y. S. J. Biol. Chem. 1997, 272, 31957.
10. Huang, B.-G.; Locke, R. D.; Jain, R. K.; Matta, K. L. Bioorg. Med. Chem. Lett. 1997, 7(9), 1157.
11. Koenig, A.; Jain, R.; Vig, R.; Norgard-Sumnicht, K. E.; Matta, K. L.; Varki, A. Glycobiology 1997, 7, 79.
12. Konradason, P.; Mootoo, D. R.; McDevitt, R. E.; Fraser-Reis, B. J. Chem. Soc., Chem. Commun. 1990, 270.
13. Jain, R. K.; Vig, R.; Rampal, R.; Chandrasekaran, E. V.; Matta, K. L. J. Am. Chem. Soc. 1994, 116, 12123.
14. Nicolaou, K. C.; Hummel, C. W.; Iwabuchi, Y. J. Am. Chem. Soc. 1992, 114, 3126.
15. NMR spectra were recorded at 30ꢀC with Bruker AM-400 and AMX-600 spectrometers (1H frequencies are 400
and 600 MHz respectively). Selected data. For 1: [ꢁ]D +48 (c 0.70; H2O); 1H NMR (D2O): ꢀ 4.80 (d, J=3.6 Hz, H-
1, GalNAca-OMe), 4.55 (d, 1H, J=7.8 Hz, H-10, Galb1-3GalNAc), 4.59(d, 1H, J=8.3 Hz, H-1000, GlcNAc), 5.14
(d, 1H, J=4.0 Hz, H-10000, Fuc), 4.60 (d, 1H, J=7.8 Hz, H-100000, Galb1-4GlcNAc), 3.38 (s, 3H, OMe), 2.78 (dd,
1H, J=4.7, 12.4 Hz, H-300e), 2.03, 2.04, 2.06 (3s, 9H, 3ÂNAc), 1.81 (dd, 1H, J=11.8, 12.4 Hz, H-300a), 1.20 (d, 3H,
J=6.7 Hz, H-60000); 13C NMR (D2O): ꢀ 173.6, 173.1, 174.0 (3ÂNHCOCH3), 172.8 (C-100, NeuAc), 97.1 (C-1, Gala-
OMe), 103.4(C-10, Galb1-3GalNAc), 98.7 (C-200, NeuAca), 100.4 (C-1000, GlcNAc), 97.6 (C-10000, Fuc), 100.4 (C-
100000, Galb1-4GlcNAc), 76.2 (C-3), 69.2 (C-6), 74.6 (C-30, site of sialylation), 73.8 (C-3000), 72.4 (C-4000), 79.2 (C-300000
,
site of sulfation on Galb1-4GlcNAc), 53.9 (OMe), 54.7 (C-2000), 21.0, 21.1, 21.3 (3ÂNHCOCH3), 14.2(C-60000, Fuc);
MS m/z: 1300.4 (M^Na)^. For 2: [ꢁ]D +75 (c 0.50; H2O); 1H NMR (D2O): ꢀ 4.79 (d, 1H, H-1, J=3.7 Hz,
GalNAca-OMe), 4.58 (d, 1H, H-10, J=7.9 Hz, Galb1-3GalNAc), 4.59 (d, 1H, H-100, J=8.2 Hz, GlcNAcb1-
6GalNAc), 5.13 (d, 1H, J=4.0 Hz, H-1000, Fuc), 4.55 (d, 1H, J=7.9 Hz, H-10000, Galb1-4GlcNAc), 3.38 (s, 3H,
OMe), 2.79 (dd, 1H, J=4.7, 12.4 Hz, H-300000e), 2.03, 2.04, 2.06 (3s, 9H, 3ÂNHCOCH3), 1.82 (dd, 1H, J=12.1,
12.4 Hz, H-300000a), 1.20 (d, 3H, H-6000, Fuc); 13C NMR (D2O): ꢀ 173.1, 173.6, 174.0 (3ÂNHCOCH3), 172.8 (C-100000
,
NeuAc), 97.2 (C-1, GalNAca-OMe), 103.3 (C-10, Galb1-3GalNAc), 100.4 (C-100, GlcNAcb1-6GalNAc), 97.6 (C-
1000, Fuc), 100.6 (C-10000, Galb1-4GlcNAc), 98.7 (C-200000, NeuAc), 76.5 (C-3), 69.2 (C-6), 79.2 (C-30, site of
sulfation), 73.8 (C-300), 72.4 (C-400), 74.7 (C-30000, site of sialylation), 53.9 (OMe), 21.0, 21.0, 21.3 (3ÂNHCOCH3),
14.3 (C-6000); MS m/z: 1300.0 (M^Na)^.