Full Paper
[12] B. Schmidt, M. Riemer, Synthesis 2016, 48, 141–149.
[13] D. Konrádová, H. Kozubíková, K. Doležal, J. Pospíšil, Eur. J. Org. Chem.
2017, 5204–5213.
[14] M. Harfenist, E. Thom, J. Org. Chem. 1972, 37, 841–848.
[15] D.-J. Chang, H. An, K.-s. Kim, H. H. Kim, J. Jung, J. M. Lee, N.-J. Kim, Y. T.
Han, H. Yun, S. Lee, G. Lee, S. Lee, J. S. Lee, J.-H. Cha, J.-H. Park, J. W. Park,
S.-C. Lee, S. G. Kim, J. H. Kim, H.-Y. Lee, K.-W. Kim, Y.-G. Suh, J. Med. Chem.
2012, 55, 10863–10884.
[16] J. Garcia, S. Barluenga, K. Beebe, L. Neckers, N. Winssinger, Chem. Eur. J.
2010, 16, 9767–9771.
[17] I. N. Lykakis, C. Efe, C. Gryparis, M. Stratakis, Eur. J. Org. Chem. 2011,
2334–2338.
[18] U. Koch-Pomeranz, H.-J. Hansen, H. Schmid, Helv. Chim. Acta 1973, 56,
2981–3004.
8,8-Dimethyl-4-phenyl-2H,8H-pyrano[2,3-f]chromene-2-one
(16):[46] By following the general procedure, 12c (280 mg,
1.00 mmol) provided 16 (164 mg, 0.54 mmol, 54 %) as an orange
1
oil. H NMR (300 MHz, CDCl3): δ = 7.53–7.47 (3 H), 7.46–7.39 (2 H),
7.21 (d, J = 8.8 Hz, 1 H), 6.96 (d, J = 10.1 Hz, 1 H), 6.67 (d, J = 8.8 Hz,
1 H), 6.19 (s, 1 H), 5.74 (d, J = 10.1 Hz, 1 H), 1.48 (s, 6 H) ppm. 13C
NMR (75 MHz, CDCl3): δ = 161.2, 156.4, 156.4, 150.3, 135.8, 130.8,
129.6, 128.9, 128.5, 127.2, 115.5, 113.3, 112.7, 111.6, 109.7, 77.7,
28.3 ppm. IR (ATR): ν = 3060 (w), 2974 (w), 1727 (s), 1614 (m), 1586
˜
(s), 1445 (m), 1372 (s), 1289 (s), 1210 (m), 1154 (m), 1113 (s), 1081
(s) cm–1. HRMS (EI): calcd. for C20H16O3 [M]+ 304.1099; found
304.1092.
Braylin (9):[46] By following the general procedure, 12d (234 mg,
1.00 mmol) provided 9 (194 mg, 0.75 mmol, 75 %). Alternatively,
14d (234 mg, 1.00 mmol) also afforded 9 (183 mg, 0.71 mmol, 71 %)
as an orange solid, m.p. 139–141 °C. 1H NMR (300 MHz, CDCl3): δ =
7.57 (d, J = 9.5 Hz, 1 H), 6.87 (d, J = 10.0 Hz, 1 H), 6.76 (s, 1 H), 6.24
(d, J = 9.4 Hz, 1 H), 5.74 (d, J = 10.1 Hz, 1 H), 3.88 (s, 3 H), 1.51 (s, 6
H) ppm. 13C NMR (75 MHz, CDCl3): δ = 161.3, 146.1, 145.8, 145.1,
143.8, 131.0, 115.3, 113.3, 111.6, 110.4, 108.8, 78.1, 56.7, 28.1 ppm.
[19] H. Ishii, T. Ishikawa, S. Takeda, S. Ueki, M. Suzuki, Chem. Pharm. Bull. 1992,
40, 1148–1153.
[20] R. O'Kennedy, R. D. Thornes (Eds.), Coumarins - Biology, Applications, and
Mode of Action, Wiley, Chichester, 1997.
[21] see ref.[20], pp. 1–22.
[22] G. Kirsch, A. Abdelwahab, P. Chaimbault, Molecules 2016, 21, 1322.
[23] J. Lü, J. Zhang, L. Li, C. Jiang, C. Xing, Curr. Pharmacol. Rep. 2015, 1, 373–
381.
[24] K. Sowndhararajan, S. Kim, Sci. Pharm. 2017, 85, 21.
[25] K. N. Venugopala, V. Rashmi, B. Odhav, Biomed. Res. Int. 2013, Article ID
963248.
[26] R. Purcaro, K. K. Schrader, C. Burandt, M. DellaGreca, K. M. Meepagala, J.
Agric. Food Chem. 2009, 57, 10632–10635.
[27] W. Li, J.-S. Zhang, J.-L. Huang, M.-H. Jiang, Y.-K. Xu, A. Ahmed, S. Yin, G.-
H. Tang, RSC Adv. 2017, 7, 31061–31068.
IR (ATR): ν = 2972 (w), 2925 (w), 1713 (s), 1599 (m), 1566 (s), 1463
˜
(m), 1480 (m), 1408 (s), 1292 (s), 1147 (s), 1128 (s), 1078 (m), 1015
(s) cm–1. HRMS (EI): calcd. for C15H14O4 [M]+ 258.0892; 258.0906.
Dipetalolactone (10):[28] By following the general procedure, 12e
(286 mg, 1.00 mmol) provided 10 (140 mg, 0.45 mmol, 45 %). Alter-
natively, 14e (234 mg, 1.00 mmol) also afforded 10 (124 mg,
[28] E. Melliou, P. Magiatis, S. Mitaku, A.-L. Skaltsounis, E. Chinou, I. Chinou, J.
Nat. Prod. 2005, 68, 78–82.
1
0.40 mmol, 40 %) as a yellowish oil. H NMR (300 MHz, CDCl3): δ =
7.93 (d, J = 9.6 Hz, 1 H), 6.79 (d, J = 10.0 Hz, 1 H), 6.62 (d, J =
10.0 Hz, 1 H), 6.11 (d, J = 9.6 Hz, 1 H), 5.58 (d, J = 10.1 Hz, 1 H), 5.54
(d, J = 9.5 Hz, 1 H), 1.46 (s, 6 H) ppm. 13C NMR (75 MHz, CDCl3): δ =
161.4, 152.1, 150.3, 138.9, 127.8, 127.7, 116.1, 115.4, 110.8, 106.1,
[29] J.-L. Cao, S.-L. Shen, P. Yang, J. Qu, Org. Lett. 2013, 15, 3856–3859.
[30] S. K. Chattopadhyay, P. Mondal, D. Ghosh, Synthesis 2014, 46, 3331–3340.
[31] X.-G. Liu, S.-S. Zhang, C.-Y. Jiang, J.-Q. Wu, Q. Li, H. Wang, Org. Lett. 2015,
17, 5404–5407.
[32] Y. R. Lee, W. K. Lee, S. K. Noh, W. S. Lyoo, Synthesis 2006, 853–859.
[33] K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G. Q. Cao, S. Barluenga,
H. J. Mitchell, J. Am. Chem. Soc. 2000, 122, 9939–9953.
[34] Y. Selim, N. Ouf, M. Sakran, Molecules 2013, 18, 11485–11495.
[35] J. Reisch, A. A. W. Voerste, J. Chem. Soc. Perkin Trans. 1 1994, 3251–3256.
[36] E. A. Domínguez-Mendoza, J. Cornejo-Garrido, E. Burgueño-Tapia, C. Or-
daz-Pichardo, Bioorg. Med. Chem. Lett. 2016, 26, 4086–4091.
[37] H. Ding, H. Sun, H. Xu, Huaxue Gongye Yu Gongcheng Jishu 2010, 31, 12–
15; CAS155:243600.
[38] T. Zhou, Q. Shi, K. H. Lee, Tetrahedron Lett. 2010, 51, 4382–4386.
[39] R. S. Mali, N. A. Pandhare, M. D. Sindkhedkar, Tetrahedron Lett. 1995, 36,
7109–7110.
[40] R. S. Mali, P. P. Joshi, Synth. Commun. 2001, 31, 2753–2760.
[41] K. Subburaj, R. Katoch, M. G. Murugesh, G. K. Trivedi, Tetrahedron 1997,
53, 12621–12628.
103.3, 102.4, 78.2, 78.1, 77.4, 28.4, 28.2 ppm. IR (ATR): ν = 2975 (w),
˜
1731 (s), 1640 (m), 1592 (s), 1442 (m), 1364 (m), 1134 (s), 1018
(m) cm–1. HRMS (EI): calcd. for C19H18O4 [M]+ 310.1205; found
310.1209.
Acknowledgments
We thank Evonik for the generous donations of solvents.
Keywords: Domino reactions · Alkynes · Arenes · Oxygen
heterocycles · Microwave chemistry · Rearrangement
[42] J. D. Godfrey, R. H. Mueller, T. C. Sedergran, N. Soundararajan, V. J. Colan-
drea, Tetrahedron Lett. 1994, 35, 6405–6408.
[43] D. Bell, M. R. Davies, G. R. Geen, I. S. Mann, Synthesis 1995, 707–712.
[44] F. Boeck, M. Blazejak, M. R. Anneser, L. Hintermann, Beilstein J. Org. Chem.
2012, 8, 1630–1636.
[45] Z.-Y. Yang, Y. Xia, P. Xia, L. M. Cosentino, K.-H. Lee, Bioorg. Med. Chem.
Lett. 1998, 8, 1483–1486.
[46] L. Xie, Y. Takeuchi, L. M. Cosentino, K.-H. Lee, J. Med. Chem. 1999, 42,
2662–2672.
[47] W.-w. Mao, T.-t. Wang, H.-p. Zeng, Z.-y. Wang, J.-p. Chen, J.-g. Shen, Bio-
org. Med. Chem. Lett. 2009, 19, 4570–4573.
[48] S. Cananzi, L. Merlini, R. Artali, G. L. Beretta, N. Zaffaroni, S. Dallavalle,
Bioorg. Med. Chem. 2011, 19, 4971–4984.
[1] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell,
Tetrahedron Lett. 1986, 27, 279–282.
[2] C. O. Kappe, Chem. Soc. Rev. 2008, 37, 1127–1139.
[3] P. T. Parvatkar, P. S. Torney, S. G. Tilve, Curr. Org. Synth. 2013, 10, 288–
317.
[4] L. M. Ambrosini, T. H. Lambert, ChemCatChem 2010, 2, 1373–1380.
[5] D. E. Fogg, E. N. dos Santos, Coord. Chem. Rev. 2004, 248, 2365–2379.
[6] A. Stadler, C. O. Kappe, J. Chem. Soc. Perkin Trans. 2 2000, 1363–1368.
[7] J. M. Kremsner, A. Stadler, A Chemist's Guide to Microwave Synthesis, 2nd
ed., Anton Paar GmbH, Graz, 2016.
[8] S. Rohilla, P. Pant, N. Jain, RSC Adv. 2015, 5, 31311–31317.
[9] M. Dell'Acqua, V. Pirovano, G. Confalonieri, A. Arcadi, E. Rossi, G. Abbiati,
Org. Biomol. Chem. 2014, 12, 8019–8030.
[10] F. Capitta, L. De Luca, A. Porcheddu, RSC Adv. 2014, 4, 59297–59301.
[11] B. Schmidt, M. Riemer, U. Schilde, Eur. J. Org. Chem. 2015,7602–7611.
Received: December 4, 2017
Eur. J. Org. Chem. 2018, 223–227
227
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim