interpret the reaction as a bimolecular Menschutkin process,
driven by the DHP–P and DHlat of the phosphinophosphonium
salt and facilitated by the occupation of the P–Cl s*-MO in
the acceptor. We envisage that appropriate consideration of
these parameters will lead to broader application of the
Menschutkin approach to element–element bond formation.
In summary, formation of the prototypical phosphinophos-
phonium chloride salt by direct combination of a phosphine
and a chlorophosphine demonstrates the P–P Menschutkin
reaction, which has potentially broad applicability.
Fig. 3 Born-Haber-Fajans cycle for the formation of [Me3PP-
Me2](3)[Cl] from Me2PCl and Me3P (all values in kJ molꢀ1).
We thank the Natural Sciences and Engineering Research
Council of Canada, the Canada Research Chairs Program, the
Canada Foundation for Innovation and the Nova Scotia Research
and Innovation Trust Fund for funding and NMR-3 for use of
instrumentation.
Notes and references
1 N. Menschutkin, Z. Physik. Chem., 1890, 5, 589.
2 R. Reed, R. Reau, F. Dahan and G. Bertrand, Angew. Chem., Int.
Ed. Engl., 1993, 32, 399–401.
3 W. Seidel, Z. Anorg. Allg. Chem., 1964, 8, 141–150.
4 S. F. Spangenberg and H. H. Sisler, Inorg. Chem., 1969, 8,
1006–1010.
5 J. C. Summers and H. H. Sisler, Inorg. Chem., 1970, 9, 862–869.
6 J. A. Boon, H. L. Byers, K. B. Dillon, A. E. Goeta and
D. A. Longbottom, Heteroat. Chem., 3000, 11, 226–231.
7 K. B. Dillon and P. K. Monks, Dalton Trans., 2007, 1420–1424.
8 N. Burford and P. J. Ragogna, J. Chem. Soc., Dalton Trans., 2002,
4307–4315.
9 C. A. Dyker and N. Burford, Chem.–Asian J., 2008, 3, 28–36.
10 A. Schmidpeter, S. Loschmidt and W. S. Sheldrick, Angew. Chem.,
Int. Ed. Engl., 2003, 24, 226–227.
11 J. J. Weigand, S. D. Riegel, N. Burford and A. Decken, J. Am.
Chem. Soc., 2007, 129, 7969–7976.
Fig. 4 Pictorial representation of the LUMOs in (i) Me2PCl,
(ii) Ph2PCl at the MP2/cc-pVTZ level. View perpendicular to the sv
plane of symmetry. H-atoms omitted for clarity. See also Supporting
Information.
(DHCIA),15 a calculated value for the P–P bond strength
in [Me3PPMe2]+ (DHP–P), and a Volume-Based-Thermo-
dynamics16 calculation for the value of the lattice enthalpy
(DHlat), to give the overall reaction an exothermicity (DHrxn
)
of 14.2 kJ molꢀ1. The DHP–P value (356 kJ molꢀ1) for
[Me3PPMe2]+ is dramatically larger than that calculated for
P2Me4 (256 kJ molꢀ1, G3 level).17 The small magnitude of
DHrxn renders the overall thermodynamics sensitive to small
changes in DHP–P and DHlat and we speculate that these
variations are the reason that previous reports of reaction
mixtures containing longer-chained trialkylphosphines
(triethyl-, tri-n-butyl-, and tri-n-octyl-) and alkyl- or arylhalo-
phosphines described thermally unstable adducts and redox
decomposition products.3–5 In particular, the inverse relationship
between DHlat and the volume of the interacting ions makes
DHrxn less negative for larger trialkylphosphines The inclusion of
a strong Lewis acid into the mixture of Me2PCl and Me3P as a
halide abstractor will render DHrxn more negative as the positive
DHCIA of [Me2P]+ will be compensated by the negative DHCIA
of the abstractor (e.g. ꢀ321 kJ molꢀ1 for AlCl3).22
12 O. Mundt, H. Riffel, G. Becker and A. Simon, Z. Naturforsch. Teil
B., 1988, 43, 952.
13 S. Shaik, A. Ioffe, A. C. Reddy and A. Pross, J. Am. Chem. Soc.,
1994, 116, 262–273.
14 Me2PCl: A. B. Burg and P. J. Slota, J. Am. Chem. Soc., 1958, 80,
1107–1109Me3P: L. H. Long and J. H. Sackman, Trans. Faraday
Soc., 1957, 53, 1606–1611.
15 DHCIA for [Me2P]+ was calculated using the experimentally known
DHCIA for AlCl3 as
Information.
a reference enthalpy. See Supporting
16 H. D. B. Jenkins and L. Glasser, J. Chem. Eng. Data, 2011, 568,
874–880.
17 K. B. Borisenko and D. W. H. Rankin, J. Chem. Soc., Dalton
Trans., 2002, 3135–3141.
18 N. Burford, P. J. Ragogna, R. MacDonald and M. J. Ferguson,
Chem. Commun., 2003, 2066–2067.
19 D. Knackstedt, Investigations of Phosphenium insertion into
Phosphorus-Phosphorus Bonds, M.Sc. Dissertation, Dalhousie
University, Halifax, NS, 2011.
20 K. George, A. L. Hector, W. Levason, G. Reid, G. Sanderson,
M. Webster and W. Zhang, Dalton Trans., 2011, 40, 1584–1593.
21 M. Baudler, B. Carlsohn, W. Bohm and D. Reuschbach, Z. Naturforsch.
Teil B, 1976, 31, 558.
22 Y. U. Pervova, M. V. Korobov and L. N. Sidorov, Russ. J. Phys.
Chem., 1992, 66, 635.
The large value of DHCIA for [Me2P]+ (770 kJ molꢀ1
)
precludes heterolytic dissociation of Me2PCl as a plausible
step prior to P–P bond formation. Ab initio calculations
indicate that the LUMO for both Me2PCl and Ph2PCl is
the P–Cl s*-antibonding orbital (Fig. 4). On this basis, we
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 7359–7361 7361