7039
In conclusion, a three-step synthesis of 3,5,7-trimethoxy-2-phenyl-4-quinolones is reported
starting from commercially available materials. These quinolones 3 can be used as analogs of
methoxylated ¯avones, they can be demethylated to give hydroxylated ¯avones and, more
interestingly, N-substituted quinolones can be easily prepared, since the hydroxyls are fully
protected.
(4,6-Dimethoxy-2-benzamido)methoxyacetophenone 2. To an ice-cooled solution of N-(3,5-
dimethoxyphenylbenzamide 1 (prepared from 3,5-dimethoxyaniline and a benzoyl chloride) in
anhydrous 1,2-dichloroethane (30 ml/mmol) under N2 was slowly added SnCl4 (2 equiv.). Freshly
distilled methoxyacetyl chloride (1 equiv.) was added dropwise as a solution in 1 ml of 1,2-
dichloroethane and the reaction was allowed to warm to room temperature and stirred for 4 h.
After this time, the solution was poured onto ice and the product was extracted with AcOEt (three
times). The organic layers were washed with water, dried and evaporated. Compound 2 (more
polar than 1) was isolated by silica gel column chromatography, eluting with cyclohexane:ethyl
acetate (9:1).
3,5,7-Trimethoxy-2-phenyl-4-quinolones 3. To a solution of 2 in distilled t-butanol (2 ml/mmol)
was added t-BuOK (5 equiv.) and the mixture was heated at 80ꢀC under N2 for 24 h. The mixture
was cooled to room temperature, poured onto an aqueous NH4Cl saturated solution and
extracted with AcOEt. The organic layers were washed with water, brine, dried and concentrated.
The mixture was puri®ed by silica gel ¯ash chromatography, eluting with cyclohexane:ethyl
acetate (8:2), to aord quinolones 3.
References
1. Harborne, J. R. The Flavonoids: Advances in Research Since 1986; Chapman & Hall: London, 1994.
2. (a) Hagiwara, M.; Inoue, S.; Tanaka, T.; Nunoki, K.; Ito, M.; Hidaka, H. Biochem. Pharmacol. 1988, 37, 2987±
2993. (b) Geahlen, R. L.; Koonchanok, N. M.; McLaughlin, J. L.; Pratt, D. E. J. Nat. Prod. 1989, 52, 982±986.
3. (a) Levitzki, A.; Gazit, A. Science 1995, 267, 1782±1788. (b) Cushman, M.; Zhu, H.; Geahlen, R. L.; Kraker, A. J.
J. Med. Chem. 1994, 37, 3353±3362. (c) Cunningham, B. D.; Threadgill, M. D.; Groundwater, P. W.; Dale, I. L.;
Hickman, J. A. Anticancer Drug. Des. 1992, 7, 365±384.
4. (a) Kuo, S. C.; Juang, J. P.; Lin, Y. T.; Wu, T. S.; Lednicer, D.; Paul, K. D.; Lin, C. M.; Hamel, E.; Lee, K. H.
J. Med. Chem. 1993, 36, 1146±1156. (b) Li, L.; Wang, H. K.; Kuo, S. C.; Wu, T. S.; Mauger, A.; Lin, C. M.;
Hamel, E.; Lee, K. H. J. Med. Chem. 1994, 37, 3400±3407. (c) Li, L.; Kang, H.; Kuo, S. C.; Wu, T. S.; Lednicer,
D.; Lin, C. M.; Hamel, E.; Lee, K. H. J. Med. Chem. 1994, 37, 1126±1135.
5. De Azevedo, W. F.; Mueller-Dieckmann, H. J.; Schulze-Gahnem, U.; Worland, P. J.; Saysville, E.; Kim, S. H.
Proc. Natl. Acad. Sci. USA 1996, 93, 2735±2740.
6. Sicheri, F.; Moare®, I.; Kuriyan, J. Nature 1997, 385, 602±609.
7. Fougerousse, A.; Gonzalez, E.; Brouillard, R. J. Org. Chem. 2000, 65, 583±586.
8. (a) Desai, K.; Desai, C. M. Indian J. Chem. 1967, 5, 170±176. (b) Fuson, R. C.; Burness, D. M. J. Chem. Soc. 1946,
68, 1270±1275. (c) Chen, B. C.; Huang, X.; Wang, J. Synthesis 1987, 482±483. (d) Chong, R. J.; Siddiqui, M. A.;
Snieckus, V. Tetrahedron Lett. 1982, 27, 5325±5328.