evident in the 1H NMR spectrum of the crude product mixture.
Based on the ratio of the nitrotoluene 2 to the adduct 5, the yield
was determined to be <10%.
Table 2 Pseudo-first order rate constants for the deprotonation of the
nitrotoluene 2 (0.1 mmol dm−3), at pH 6.0, 6.5 and 7.0, in 0.1 mol dm−3
phosphate buffer containing 1% methanol at 298 K, alone and in
the presence of either ethanolamine, b-cyclodextrin or one of the
aminocyclodextrins 1a–c (10 mmol dm−3
)
Acknowledgements
kobs ×102/s−1
The authors acknowledge the assistance of Dr N. Brasch with
the stopped-flow UV spectrophotometric experiments, and the
financial support provided by the Australian Research Council
for this work.
pH kun ×102/s−1 Ethanolamine b-Cyclodextrin 1a 1b 1c
6.0 0.04
6.5 0.09
7.0 0.15
0.04
0.09
0.15
0.03
0.08
0.14
0.4
0.9
1.9 12
3
7
4
5
9
References
1 (a) R. Breslow and S. D. Dong, Chem. Rev., 1998, 98, 1997; (b) C. J.
Easton and S. F. Lincoln, Modified Cyclodextrins: Scaffolds and
Templates for Supramolecular Chemistry, Imperial College Press,
London, 1999; (c) L. Barr, P. G. Dumanski, C. J. Easton, J. B. Harper,
K. Lee, S. F. Lincoln, A. G. Meyer and J. S. Simpson, J. Inclusion
Phenom. Macrocyclic Chem., 2004, 50, 19; (d) C. J. Easton, S. F.
Lincoln, L. Barr and H. Onagi, Chem. Eur. J., 2004, 10, 3120.
2 (a) A. C. Hengge, A. E. Tobin and W. W. Cleland, J. Am. Chem.
Soc, 1995, 117, 5919; (b) K. K. Park, B.-K. Kang and J. W. Park,
Bull. Korean Chem. Soc., 1995, 16, 672; (c) C. J. Easton, S. Kassara,
S. F. Lincoln and B. L. May, Aust. J. Chem., 1995, 48, 269; (d) C. G.
Ferguson and G. R. J. Thatcher, Org. Lett., 1999, 1, 829; (e) M.-M.
Luo, R.-G. Xie, P.-F. Xia, L. Tao, D.-Q. Yuan and H.-M. Zhao,
J. Phys. Org. Chem., 2001, 14, 515; (f) L. Barr, C. J. Easton, K. Lee,
S. F. Lincoln and J. S. Simpson, Tetrahedron Lett., 2002, 43, 7797;
(g) A. Fragoso, R. Cao and M. Ban˜os, Tetrahedron Lett., 2004, 45,
4069.
3 (a) R. Breslow and A. Graff, J. Am. Chem. Soc., 1993, 115, 10988;
(b) R. Breslow, J. Mol. Catal., 1994, 91, 161; (c) R. Breslow and
C. Schmuck, J. Am. Chem. Soc., 1996, 118, 6601; (d) R. Breslow, J.
Desper and Y. Huang, Tetrahedron Lett., 1996, 37, 2541.
4 (a) R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc., 1953, 75,
2439; (b) A. T. Nielsen, in The Chemistry of the Nitro and Nitroso
Groups, ed. H. Feuer, Wiley-Interscience, New York, 1969, ch. 7, pp.
349–486.
recorded as a function of time at 298 K, using either conventional
or stopped-flow UV spectrophotometry, at 300 and 325 nm,
respectively, to monitor appearance of the nitronate 3. The rates
of deprotonation of the nitrotoluene 2 determined in this manner
from the initial rates of reaction are summarised in Table 2. These
values are the average of at least three determinations, and the
results of individual experiments varied by less than 10%.
3-(4-tert-Butylphenyl)-3-nitropropyl methyl ketone (5)
Method 1. A solution of diisopropylamine (10 mg, 0.1 mmol),
methyl vinyl ketone (4) (73 mg, 1.0 mmol) and 4-tert-butyl-a-
nitrotoluene (2) (200 mg, 1.0 mmol) in acetonitrile (1 cm3) was
stirred at 298 K for 24 h, before being poured into aqueous
HCl (0.1 mol dm−3, 5 cm3). The aqueous solution was extracted
with diethyl ether (3 × 15 cm3), and the combined organic
extracts were dried (MgSO4) and concentrated under reduced
pressure. Chromatography of the residue on silica, eluting with
ethyl acetate–hexane (1 : 9, v : v) afforded 3-(4-tert-butylphenyl)-
3-nitropropyl methyl ketone (5) as a colourless solid (120 mg,
46%): mp 61–62 ◦C; (Found: C, 68.13; H, 8.12; N, 5.06%.
C15H21NO3 requires C, 68.42; H, 8.04; N, 5.32%); dH (300 MHz,
CDCl3) 7.42 (d, 2H, J 8.7), 7.37 (d, 2H, J 8.7), 5.51 (dd, 1H,
J 9.1, J 5.8), 2.68 (m, 1H), 2.50 (t, 2H, J 7.0), 2.38 (m, 1H),
2.14 (s, 3H), 1.31 (s, 9H); dC (75 MHz, CDCl3) 206.1, 153.0,
131.0, 127.3, 125.9, 89.9, 39.3, 34.8, 31.3, 30.1, 27.6; m/z (EI)
5 (a) H. Adams, J. C. Anderson, S. Peace and A. M. K. Pennell, J. Org.
Chem., 1998, 63, 9932; (b) R. Nouguier, V. Be´raud, P. Vanelle and
M. P. Crozet, Tetrahedron Lett., 1999, 40, 5013; (c) R. Ballini, D.
Fiorini and A. Palmieri, Tetrahedron Lett., 2004, 45, 7027.
6 R. Ballini, L. Barboni and G. Giarlo, J. Org. Chem., 2003, 68, 9173.
7 (a) R. Ballini and G. Bosica, J. Org. Chem., 1997, 62, 425; (b) P. B.
Kisanga and J. G. Verkade, J. Org. Chem., 1999, 64, 4298; (c) D. A.
Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw and C. W.
Downey, J. Am. Chem. Soc., 2003, 125, 12692.
•
263 (0.01%, M+ ), 248 (25), 233 (52), 217 (82), 143 (84) and 57
(100).
Method 2. Methyl vinyl ketone (4) (35 mg, 0.50 mmol),
4-tert-butyl-a-nitrotoluene (2) (10 mg, 0.052 mmol) and 6A-
amino-6A-deoxy-b-cyclodextrin (1a) (285 mg, 0.25 mmol) were
dissolved in phosphate buffer (pH 6.0, 0.1 mol dm−3, 10 cm3)
containing 1% methanol, and the mixture was stirred at 298 K
for 24 h, before being poured into aqueous HCl (0.1 mol dm−3,
5 cm3). The aqueous solution was extracted with diethyl ether
(3 × 15 cm3), and the combined organic extracts were dried
(MgSO4) and concentrated under reduced pressure. Chromatog-
raphy of the residue on silica, eluting with ethyl acetate–hexane
(1 : 9, v : v), afforded 3-(4-tert-butylphenyl)-3-nitropropyl methyl
ketone (5) as a colourless solid (9.3 mg, 68%).
8 (a) R. Ballini, P. Marziali and A. Mozzicafreddo, J. Org. Chem.,
1996, 61, 3209; (b) N. Halland, R. G. Hazell and K. A. Jørgensen,
J. Org. Chem., 2002, 67, 8331; (c) N. Ono, A. Kamimura, H. Miyake,
I. Hamamoto and A. Kaji, J. Org. Chem., 1985, 50, 3692.
9 (a) F. G. Bordwell and W. J. Boyle, Jr., J. Am. Chem. Soc., 1972, 94,
3907; (b) A. J. Kresge, Can. J. Chem., 1974, 52, 1897.
10 N. Kornblum, R. A. Smiley, R. K. Blackwood and D. C. Iffland,
J. Am. Chem. Soc., 1955, 77, 6269.
11 B. L. May, S. D. Kean, C. J. Easton and S. F. Lincoln, J. Chem. Soc.,
Perkin Trans. 1, 1997, 3157.
12 K. Hamasaki, H. Ikeda, A. Nakamura, A. Ueno, F. Toda, I. Suzuki
and T. Osa, J. Am. Chem. Soc., 1993, 115, 5035.
13 (a) K. A. Connors and J. M. Lipari, J. Pharm. Sci., 1976, 65, 379;
(b) K. A. Connors and T. W. Rosanske, J. Pharm. Sci., 1980, 69, 173;
(c) T. Aoyagi, A. Nakamura, H. Ikeda, T. Ikeda, H. Mihara and A.
Ueno, Anal. Chem., 1997, 69, 659.
When the reaction was repeated using b-cyclodextrin instead
of the aminocyclodextrin 1a, only traces of the adduct 5 were
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 9 9 0 – 2 9 9 3
2 9 9 3