Organic Letters
Letter
Beauchemin, A. M. J. Am. Chem. Soc. 2012, 134, 16111−16114.
(c) Gan, W.; Moon, P. J.; Clavette, C.; Das Neves, N.; Markiewicz, T.;
Toderian, A. B.; Beauchemin, A. M. Org. Lett. 2013, 15, 1890−1893.
(d) Lavergne, K.; Bongers, A.; Betit, L.; Beauchemin, A. M. Org. Lett.
2015, 17, 3612−3615. (e) Ivanovich, R. A.; Clavette, C.; Vincent-Rocan,
J.-F.; Roveda, J.-G.; Gorelsky, S. I.; Beauchemin, A. M. Chem. - Eur. J.
2016, 22, 7906−7916.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(10) (a) Wicks, D. A.; Wicks, Z. W., Jr. Prog. Org. Coat. 1999, 36, 148−
172. (b) Wicks, D. A.; Wicks, Z. W., Jr. Prog. Org. Coat. 2001, 41, 1−83.
(c) Wicks, D. A.; Wicks, Z. W., Jr. Prog. Org. Coat. 2001, 43, 131−140.
(11) Selected examples of azomethine imines as substrates in
asymmetric catalysis: (a) Hesping, L.; Biswas, A.; Daniliuc, C. G.;
ACKNOWLEDGMENTS
■
We thank the University of Ottawa (URC to A.M.B.; Dr. Yu
Scholarship to I.R.; UROP to P.L.) and NSERC (Discover Grant to
A.M.B; CGS-D3 to A.B.; USRA to P.L.; PGS-D to J.-F.V-R.) for
generous financial support. We thank Dr. Bulat Gabidullin
(University of Ottawa) for assistance in determining the structure
of 7b and Kaitlyn Lavergne for exploratory aminothiocarbonylation
experiments involving enol ethers.
Muck-Lichtenfeld, C.; Studer, A. Chem. Sci. 2015, 6, 1252−1257.
̈
(b) Hong, X.; Kucu̧ k, H. B.; Maji, M. S.; Yang, Y.-F.; Rueping, M.; Houk,
̈ ̈
K. N. J. Am. Chem. Soc. 2014, 136, 13769−80. (c) Hori, M.; Sakakura, A.;
Ishihara, K. J. Am. Chem. Soc. 2014, 136, 13198−13201.
́
(12) (a) Suarez, A.; Downey, C. W.; Fu, G. C. J. Am. Chem. Soc. 2005,
127, 11244−11245. (b) Imaizumi, T.; Yamashita, Y.; Kobayashi, S. J.
Am. Chem. Soc. 2012, 134, 20049−52. (c) Wang, M.; Huang, Z.; Xu, J.;
Chi, Y. R. J. Am. Chem. Soc. 2014, 136, 1214−1217. (d) Bongers, A.;
Moon, P. J.; Beauchemin, A. M. Angew. Chem., Int. Ed. 2015, 54, 15516−
15519.
(13) (a) Varvounis, G. Pyrazol-3-ones: Part IV: Synthesis and
Applications . Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.;
Elsevier: New York, 2009; Vol. 98, pp 1−328. See also: (b) Chupp, J. P.
J. Heterocycl. Chem. 1971, 8, 557. Examples of alkene amino-
thiocarbonylation: (c) Awasthi, C.; Yadav, L. D. S. Synlett 2010, 2010,
1783−1788. (d) Pla, D.; Tan, D. S.; Gin, D. Y. Chem. Sci. 2014, 5, 2407−
2415.
(14) (a) Dorn, H.; Kreher, T. Heterocycles 1994, 38, 2171−2181.
(b) Jesberger, M.; Davis, T. P.; Barner, L. Synthesis 2003, 1929−1958.
(c) Schantl, J. G. In Science of Synthesis; Padwa, A., Bellus, D., Eds.;
Thieme Verlag: Stuttgart, 2004; Vol. 27, pp731−824. The ionic
resonance structures shown herein are supported by these reports. See
REFERENCES
■
(1) For reviews on isocyanates and isothiocyanates as precursors to
carbamates, ureas, and as themselves building blocks in heterocyclic
synthesis, see: (a) Ozaki, S. Chem. Rev. 1972, 72, 457−496.
(b) Rasmussen, J. K.; Hassner, A. Chem. Rev. 1976, 76, 389−408.
(c) Dhar, D. N.; Murthy, K. S. K. Synthesis 1986, 1986, 437−449.
(d) Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1−24.
(2) Examples of the synthesis of N−N−CO and N−N−CS
heterocycles with isocyanates: (a) Whitehead, C. W.; Traverso, J. J. J.
Am. Chem. Soc. 1955, 77, 5872−5877. (b) Kane, J. M. Synthesis 1987,
1987, 912−914. (c) Deng, J. Z.; Burgey, C. S. Tetrahedron Lett. 2005, 46,
7993−7996.
(3) For other routes, see: (a) Novikov, M. S.; Khlebnikov, A. F.;
Stepanov, A. A.; Kostikov, R. R. Synthesis 1994, 1994, 782−784.
(b) Pore, D. M.; Hegade, P. G.; Mane, M. M.; Patil, J. D. RSC Adv. 2013,
3, 25723−25726.
(4) Examples of uses and biological importance of N−N−CO
heterocycles: (a) Al-Masoudi, I. A.; Al-Soud, Y. A.; Al-Salihi, N. J.; Al-
Masoudi, N. A. Chem. Heterocycl. Compd. 2006, 42, 1377−1403.
(b) Jayalatha; Palled, M. S.; Chandran, M.; Regi, C.; Bhat, A.;
Krishnakumar, K. World J. Pharm. Pharm. Sci. 2014, 3, 1051−1067.
(c) Gauthier, D. R.; Sherry, B. D.; Cao, Y.; Journet, M.; Humphrey, G.;
Itoh, T.; Mangion, I.; Tschaen, D. M. Org. Lett. 2015, 17, 1353−1356.
(d) Luo, Y.-P.; Jiang, L.-L.; Wang, G.-D.; Chen, Q.; Yang, G.-F. J. Agric.
Food Chem. 2008, 56, 2118−2124. (e) Krenzer, J. U.S. Patent 3925054
A, Dec 9, 1975.
(15) (a) Vincent-Rocan, J.-F.; Clavette, C.; Leckett, K.; Beauchemin, A.
M. Chem. - Eur. J. 2015, 21, 3886−3890. (b) Vincent-Rocan, J.-F.;
Derasp, J. S.; Beauchemin, A. M. Chem. Commun. 2015, 51, 16405−
16408.
(16) (a) Evans, G. W.; Milligan, B. Aust. J. Chem. 1967, 20, 1779−1781.
(b) Kubota, S.; Uda, M. Chem. Pharm. Bull. 1973, 21, 1342−1350.
(17) For more information on chalcogen bonding, see: (a) Wang, W.;
Ji, B.; Zhang, Y. J. Phys. Chem. A 2009, 113, 8132−8135. (b) Adhikari,
U.; Scheiner, S. J. Phys. Chem. A 2014, 118, 3183−3192. (c) Beno, B. R.;
Yeung, K.-S.; Bartberger, M. D.; Pennington, L. D.; Meanwell, N. A. J.
Med. Chem. 2015, 58, 4383−4438. (d) Garrett, G. E.; Gibson, G. L.;
Straus, R. N.; Seferos, D. S.; Taylor, M. S. J. Am. Chem. Soc. 2015, 137,
4126−33.
(5) Pioneering work with imino isocyanates: (a) Lwowski, W.; de
Mauriac, R. A.; Murray, R. A.; Lunow, L. Tetrahedron Lett. 1971, 12,
̈
425−428. (b) Lockley, W. J. S.; Lwowski, W. Tetrahedron Lett. 1974, 15,
4263−4266. (c) Lwowski, W.; de Mauriac, R. A. Tetrahedron Lett. 1964,
5, 3285−3288. (d) Wadsworth, W. S.; Emmons, W. D. J. Org. Chem.
1967, 32, 1279−1285. (e) Shah, S. N.; Chudgar, N. K. Molecules 2000, 5,
657−664.
(18) For reviews, see: (a) Stuckwisch, C. G. Synthesis 1973, 1973, 469−
483. (b) Rodina, L. L.; Kolberg, A.; Schulze, B. Heterocycles 1998, 49,
587−618. (c) See ref 14c. (d) Qiu, G.; Kuang, Y.; Wu, J. Adv. Synth.
Catal. 2014, 356, 3483−3504.
(6) Reviews and articles on N-substituted isocyanates: (a) Reichen, W.
Chem. Rev. 1978, 78, 569−588. (b) Wentrup, C.; Finnerty, J. J.; Koch, R.
Curr. Org. Chem. 2011, 15, 1745−1759. (c) Vincent-Rocan, J.-F.;
Ivanovich, R. A.; Clavette, C.; Leckett, K.; Bejjani, J.; Beauchemin, A. M.
Chem. Sci. 2016, 7, 315−328 and references cited therein. (d) Vincent-
Rocan, J.-F.; Beauchemin, A. M. Synthesis 2016, in press.
(7) For synthesis and reactivity of iminoisothiocyanates: (a) Anthoni,
U.; Berg, C.; Nielsen, P. H. Acta Chem. Scand. 1969, 23, 3602−3604.
(b) Berg, C. J. Chem. Soc., Chem. Commun. 1974, 122. (c) Hall, M. D.;
Salam, N. K.; Hellawell, J. L.; Fales, H. M.; Kensler, C. B.; Ludwig, J. A.;
Szakacs, G.; Hibbs, D. E.; Gottesman, M. M. J. Med. Chem. 2009, 52,
́
3191−3204. For a review, see ref 6d.
(8) Early example of alkene aminocarbonylation with iminoisocya-
nates: Jones, D. W. J. Chem. Soc., Chem. Commun. 1982, 766−768.
(9) For prior work on alkene aminocarbonylation, see: (a) Roveda, J.
G.; Clavette, C.; Hunt, A. D.; Gorelsky, S. I.; Whipp, C. J.; Beauchemin,
A. M. J. Am. Chem. Soc. 2009, 131, 8740−8741. (b) Clavette, C.; Gan;
Bongers, A.; Markiewicz, T.; Toderian, A. B.; Gorelsky, S. I.;
D
Org. Lett. XXXX, XXX, XXX−XXX