Stoner et al.
not a trivial matter and involves the careful balancing
of many factors: base, alkylating agent, protecting
groups, rate, and order of addition of reagents and
temperature. Even after extensive optimization, forma-
tion of the desired 6-O-methyl isomer in 2 is accompanied
by undesired overalkylated species.11 Unfortunately, at-
tempts to introduce groups larger than methyl at the
6-position via the same protocols have generally resulted
in poor conversions and product purity.11c To develop an
efficient synthesis of 3 requires the development of
alternative methodologies.
In an early synthesis of 3, the 6-O-PQ moiety was
introduced in two steps: allylation under conditions
similar to those employed for the methylation in 2,
followed by Heck coupling with bromoquinoline.12,13 The
initial allylation protocol required slow addition (3-5 h)
of a DMSO/THF solution of KOC(CH3)3 to a dilute
solution of protected erythromycin A oxime 4 and allyl
bromide affording, under the best circumstances, only a
60-75% conversion to 5 with substantial production of
overallylated species (eq 1, condition A).
The transition-metal-catalyzed allylation of nucleo-
philes has proven to be a versatile methodology in organic
synthesis. A variety of nucleophiles have been shown to
efficiently couple with palladium π-allyl complexes, and
with advances in the regioselective and enantioselective
reactions, the utility of the chemistry continues to be
expanded.14 The palladium-catalyzed allylation of alco-
hols, however, has been utilized to a much lesser extent,
owing to the generally poor nucleophilicity of alcohols.
Most examples of oxygen nucleophiles have been limited
to phenols,15 intramolecular allylations, and other sub-
strate specific systems.16
While Sinou’s group has reported moderate to excellent
yields in the allylation of carbohydrate substrates using
allyl ethyl carbonate, an excess (2-6 equiv) of the
allylating agent was required.17 It seemed likely that the
spectator alkoxy group liberated from the carbonate
competes with the desired nucleophile for the π-allyl
palladium reagent. We reasoned that the increased steric
requirements of the spectator tert-butoxy group could be
utilized to competitively favor allylation of the desired
alcohol.18,19 Thus, exposure of 4 to 1.45 equiv of allyl tert-
butyl carbonate 6 in the presence of Pd(OAc)2/Ph3P in
refluxing THF afforded the desired 6-O-allyl derivative
5 in 77% isolated yield (eq 1, condition B).
The effects of the spectator group are quite pronounced
(see Table 1). In attempts to convert protected oxime 4
to its 6-O-allyl derivative 5, allyl methyl20 and allyl ethyl
carbonate proved equally inefficient and unselective,
despite the use of large excesses of reagent. Allyl isopro-
(13) (a) Stoner, E. J .; Peterson, M. J .; Ku, Y.-Y.; Cink, R. D.; Cooper,
A. J .; Deshpande, M. N.; Grieme, T.; Haight, A. R.; Hill, D. R.; Hsu,
M. C.-P.; King, S. A.; Leanna, M. R.; Lee, E. C.; McLaughlin, M. A.;
Morton, H. E.; Napier, J . J .; Plata, D. J .; Raje, P. R.; Rasmussen, M.;
Riley, D.; Tien, J . J .-H. J .; Wittenberger, S. J . U.S. Patent 6,437,106,
2002. (b) Allen, M. S.; Premchandran, R. H.; Chang, S.-J .; Condon, S.;
DeMattei, J . A.; King, S. A.; Kolackowski, L.; Manna, S.; Nichols, P.
J .; Patel, H. H.; Patel, S. R.; Plata, D. J .; Stoner, E. J .; Tien, J . J .-H.
J .; Wittenberger, S. J . U.S. Patent 6,579,986, 2002.
(14) (a) Comprehensive Asymmetric Catalysis; J acobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol 2. (b) Trost,
B. M.; Van Vranken, D. L. Chem Rev. 1996, 96 (1), 395. (c) Shibasaki,
M. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.;
J AI Press: Greenwich, 1996; Vol. 5. (d) Tsuji, J . Palladium Reagents
and Catalysts: Innovations in Organic Synthesis; J ohn Wiley and
Sons: New York, 1995. (e) Harrington, P. J . In Comprehensive
Organometallic Chemistry II; Abel, E. W. Stone, F. G. A., Wilkinson,
G., Eds.; Pergamon Press: Oxford, 1995; Vol. 12, pp 798-903
(15) (a) Larock, R. C.; Lee, N. H. Tetrahedron Lett. 1991, 32 (44),
6315. (b) Muzart, J .; Genet, J .-P.; Denis, A. J . Organomet. Chem. 1987,
326 (1), C23.
(16) (a) Burke, S. D.; J iang, L. Org. Lett. 2001, 3, 1953. (b) Vares,
L.; Rein, T. Org. Lett. 2000, 2 (17), 2611. (c) Labrosse, J .-R.; Poncet,
C.; Lhoste, P.; Sinou, D. Tetrahedron Asym. 1999, 10, 1069. (d)
Fournier-Nguefack, C.; Lhoste, P.; Sinou, D. J . Chem. Res. (S) 1998,
105. (e) Thorey, C.; Wilken, J .; Henin, F.; Martens, J .; Mehler, T.;
Muzart, J . Tetrahedron Lett. 1995, 36, 5527. (f) Massacret, M.; Goux,
C.; Lhoste, P.; Sinou, D. Tetrahedron Lett. 1994, 35, 6093. (g) Trost,
B. M.; McEachern, E. J .; Toste, F. D. J . Am. Chem. Soc. 1998, 120,
12702. (h) Cuiper, A. D.; Kellogg, R. M. Chem. Commun. 1998, 655
(17) (a) Lakhmiri, R.; Lhoste, P.; Sinou, D. Tetrahedron Lett. 1989,
30 (35), 4669. (b) Lakhmiri, R.; Lhoste, P.; Sinou, D. Synth. Commun.
1990, 20 (10), 1551. (c) Kumar, V.; Gopalakrishnan, V.; Ganesh, K. N.
Bull. Chem. Soc. J pn. 1992, 65 (6), 1665. (d) Lakhmiri, R.; Lhoste, P.;
Kryczka, B.; Sinou, D. J . Carbohydr. Chem. 1993, 12 (2), 223. (e)
Lakhmiri, R.; Lhoste, P.; Boullanger, P.; Sinou, D. J . Chem. Res. (S)
1990, 342.
The isolated yields from this process were generally
40-50%, and all attempts to further improve this pro-
cedure have thus far failed.
(11) (a) Watanabe, Y.; Morimoto, S.; Adachi, T.; Kashimura, M.;
Asaka, T. J . Antibiotics 1993, 46 (4), 647. (b) Morimoto, S.; Adachi, T.;
Matsunaga, T.; Kashimura, M.; Asaka, T.; Watanabe, Y.; Sota, K.;
Sekiuchi, K. U.S. Patent 4,990,602, 1991. (c) Morimoto, S.; Misawa,
Y.; Adachi, T.; Nagate, T.; Watanabe, Y.; Omura, S. J . Antibiotics 1990,
43 (5), 286.
(18) An alternative approach is incorporation of the desired alcohol
in the allyl carbonate: Oltvoort, J . J .; Kloosterman, M.; VanBoom, J .
H. Recl. Trav. Chim. Pays-Bas 1983, 102, 501.
(12) For an improved synthesis of ABT-773 incorporating this
chemistry, see: Plata, D. J .; Leanna, M. R.; Rasmussen, M.; McLaugh-
lin, M. A.; Condon, S. L.; Kerdesky, F. A. J .; King, S. A.; Peterson, M.
A.; Stoner, E. J .; Wittenberger, S. J ., submitted.
(19) Reviews of π-allyl palladium chemistry (a) Trost, B. M. Acc.
Chem. Res. 1980, 13 (11), 386. (b) Tsuji, J . Tetrahedron 1986, 42 (16),
4361.
(20) Commercially available.
8848 J . Org. Chem., Vol. 68, No. 23, 2003