Page 5 of 7
ACS Catalysis
1
2
3
4
5
6
7
8
9
Milstein, D. Direct synthesis of imines from alcohols and amines
with liberation of H2. Angew. Chem. Int. Ed. 2010, 49, 1468–1471. d)
Cano, R.; Ramon, D. J.; Yus, M. Impregnated Ruthenium on Mag-
netite as a Recyclable Catalyst for the N-Alkylation of Amines,
Sulfonamides, Sulfinamides, and Nitroarenes Using Alcohols as
Electrophiles by a Hydrogen Autotransfer Process. J. Org. Chem.
2011, 76, 5547−5557. e) Saha, B.; Wahidur Rahaman, S. M.; Daw,
P.; Sengupta, G.; Bera, J. K. Metal–Ligand Cooperation on a Diru-
thenium Platform: Selective Imine Formation through Acceptor-
less Dehydrogenative Coupling of Alcohols with Amines. Chem.
Eur. J. 2014, 20, 6542–6551. f) Oldenhuis, N. J.; Dong, V. M.; Guan,
Z. Catalytic acceptorless dehydrogenations: Ru-Macho catalyzed
construction of amides and imines. Tetrahedron 2014, 70, 4213–
4218. g) Higuchi, T.; Tagawa, R.; Iimuro, A.; Akiyama, S.; Nagae,
H.; Mashima, K. Tunable Ligand Effects on Ruthenium Catalyst
Activity for Selectively Preparing Imines or Amides by Dehydro-
genative Coupling Reactions of Alcohols and Amines. Chem. Eur.
J. 2017, 23, 12795–12804.
(3) a) Gunanathan, C.; Milstein, D. Metal–Ligand Cooperation
by Aromatization–Dearomatization: A New Paradigm in Bond
Activation and “Green” Catalysis Acc. Chem. Res. 2011, 44, 588–
602. b) Gunanathan, C.; Milstein, Applications of Acceptorless
Dehydrogenation and Related Transformations in Chemical Syn-
thesis. Science 2013, 341, 1229712. c) Crabtree, R. H. Homogeneous
Transition Metal Catalysis of Acceptorless Dehydrogenative Alco-
hol Oxidation: Applications in Hydrogen Storage and to Hetero-
cycle Synthesis. Chem. Rev. 2017, 117, 9228−9246.
In summary, the imination of primary alcohols catalyzed
by [Ru(H2O)6]3+ supported on structured porous solids
occurs in high yields and with a wide functional group
tolerance under aerobic conditions, which is a step
forward for imine synthesis. This work constitutes an
example of cross–fertilization between zeolites and MOFs
to support catallytically active metal species.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. CCDC–1841425 contains the sup-
plementary crystallographic data for this paper. These data
are provided free of charge by The Cambridge Crystallograph-
ic Data Centre.
Additional experimental procedures, X–ray crystallographic
data collection, Figures, Tables and compound characteriza-
tion. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
* To whom correspondence should be addressed. E–mails:
Notes
(4) a) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P.
Tetrapropylammonium Perruthenate, Pr4N+RuO4-, TPAP:
A
The authors declare no competing financial interests.
Catalytic Oxidant for Organic Synthesis. Synthesis 1994, 7, 639–
666. b) Lenz, R.; Ley, S. V. Tetra-n-propylammonium perruthe-
nate (TPAP)-catalysed oxidations of alcohols using molecular
oxygen as a co-oxidant. J. Chem. Soc., Perkin Trans. 1997, 1, 3291–
3292. c) Over, H. Surface Chemistry of Ruthenium Dioxide in
Heterogeneous Catalysis and Electrocatalysis: From Fundamental
to Applied Research. Chem. Rev. 2012, 112, 3356–3342.
(5) a) Zhang, S.–Y.; Tu, Y.–Q.; Fan, C.–A.; Jiang, Y.–J.; Shi, L.;
Cao, K.; Zhang, E. Cross-Coupling Reaction between Alcohols
through sp3 C-H Activation Catalyzed by a Ruthenium/Lewis Acid
System. Chem. Eur. J. 2008, 14, 10201–10205.
(6) a) Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xua, Q. General, Green,
and Scalable Synthesis of Imines from Alcohols and Amines by a
Mild and Efficient Copper-Catalyzed Aerobic Oxidative Reaction
in Open Air at Room Temperature. Adv. Synth. Catal. 2012, 354,
2671–2677. b) Zhang, G.; Hanson, S. K. Cobalt-catalyzed acceptor-
less alcohol dehydrogenation: synthesis of imines from alcohols
and amines. Org. Lett. 2013, 15, 650−653. c) Bain, J.; Cho, P.;
Voutchkova–Kostal, A. Recyclable hydrotalcite catalysts for alco-
hol imination via acceptorless dehydrogenation. Green Chem.
2015, 17, 2271–2280. d) Mukherjee, A.; Nerush, A.; Leitus, G.;
Shimon, L. J. W.; Ben David, Y.; Espinosa Jalapa, N. A.; Milstein,
D. Manganese-Catalyzed Environmentally Benign Dehydrogena-
tive Coupling of Alcohols and Amines to Form Aldimines and H2:
A Catalytic and Mechanistic Stud. J. Am. Chem. Soc. 2016, 138,
4298−4301. e) Jaiswal, G.; Landge, V. G.; Jagadeesan, D.; Balara-
man, E. Sustainable iron-catalyzed direct imine formation by
acceptorless dehydrogenative coupling of alcohols with amines.
Green Chem. 2016, 18, 3232–3238.
(7) a) Pruett, R. L.; Keenan, M. J.; Mozeleski, E. J. US patent
US 5103058, 1992, 8 pp., Exxon Chemical Patents, Inc. USA. b)
Martin, S. F. Recent applications of imines as key intermediates in
the synthesis of alkaloids and novel nitrogen heterocycles. Pure
Appl. Chem. 2009, 81, 195–204.
(8) a) Cho, C. S.; Kim, B. T.; Kim, H.–S.; Kim, T.–J.; Shim, S. C.
Ruthenium-Catalyzed One-Pot β-Alkylation of Secondary Alco-
hols with Primary Alcohols. Organometallics 2003, 22, 3608–3610.
b) Fujita, K.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Dehydrogena-
tive Oxidation of Primary and Secondary Alcohols Catalyzed by a
Cp*Ir Complex Having a Functional C,N-Chelate Ligand. Org.
Lett. 2011, 13, 2278−2281. c) Sik Cho, C.; Tae Kim, B.; Kim, T.–J.;
Author Contributions
The manuscript was written through contributions of all au-
thors. All authors have given approval to the final version of
the manuscript.
ACKNOWLEDGMENT
This work was supported by the MINECO (Spain) (Projects
CTQ2017-86735-P,
CTQ2016–75671–P,
CTQ2014–56312–P,
CTQ2014–55178–R, MAT2013–40823–R and Excellence Units
“Severo Ochoa” SEV2016–0683 and “Maria de Maeztu” and
MDM–2015–0538) and European Union through ERC–AdG–
2014–671093 (SynCatMatch) and the Ministero dell’Istruzione,
dell’Università e della Ricerca (Italy) (FFABR 2017). M. M.
thanks the MINECO for a predoctoral contract. R. A. thanks
UPV for a post–doctoral contract. J. F. –S. acknowledges
financial support from the Subprograma Atracció de Talent –
Contractes Postdoctorals de la Universitat de Valencia. We
also acknowledge SOLEIL for provision of synchrotron radia-
tion facility and thank Dr. Pierre Fertey for his assistance
REFERENCES
(1) For reviews see a) Guillena, G.; Ramón, D. J.; Yus, M. Hydro-
gen Autotransfer in the N-Alkylation of Amines and Related
Compounds using Alcohols and Amines as Electrophiles. Chem.
Rev. 2009, 110, 1611–1641. b) Sordakis, K.; Tang, C.; Vogt, L. K.;
Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous
Catalysis for Sustainable Hydrogen Storage in Formic Acid and
Alcohols. Chem. Rev. 2018, 118, 372−433. c) Corma, A.; Navas, J.;
Sabater, M. J. Advances in One-Pot Synthesis through Borrowing
Hydrogen Catalysis. Chem. Rev. 2018, 118, 1410−1459.
(2) For a review see a) Chen, B.; Wang, L.; Gao, S. Recent Ad-
vances in Aerobic Oxidation of Alcohols and Amines to Imines.
ACS Catal. 2015, 5, 5851−5876. For representative examples see b)
Jung Won, K.; Jinling, H.; Kazuya, Y.; Noritaka, M. Heterogene-
ously Catalyzed One-pot Synthesis of Aldimines from Primary
Alcohols and Amines by Supported Ruthenium Hydroxides.
Chem. Lett. 2009, 38, 920−921. c) Gnanaprakasam, B.; Zhang, J.;
ACS Paragon Plus Environment