Anodic dissolution of tin in alcohols
Russ.Chem.Bull., Int.Ed., Vol. 65, No. 3, March, 2016
843
9—10 mm thick) were placed on an aluminum stage (25 mm)
and fixed with a conducting silver glue. The images were obꢀ
tained at an accelerating voltage of 30 kV (working distance
8—10 mm) in the secondary electron detection mode.9,20
A ТЕСꢀ13 laboratory stabilizer with the stabilization of the
outlet current at 0.005—1 A served as a power supply. A tin rod
(diameter 6.5 mm, height 55 mm, working surface area 5 cm2,
purity of tin 99.99%) was used as an anode. The cathode was an
iron plate (working surface area 5 cm2). Methanol and ethanol
(Acros) were used without additional drying.
2. N. Ya. Turova, M. I. Yanovskaya, Izv. Akad. Nauk SSSR,
Neorg. Mater. [Russ. Chem. Bull. USSR, Inorg. Mater.], 1983,
19, 693 (in Russian).
3. N. Ya. Turova, E. P. Turevskaya, V. G. Kessler, M. I.
Yanovskaya, The Сhemistry of Metal Alkoxides, Kluwer Acaꢀ
demic Publishers, New York, 2001.
4. А. J. Joseph, J. D. Cresler, D. M. Richey, D. L. Hasame,
Technol. Dig.ꢀInt. Electron. Devices Meet., 1996, 253.
5. O. Y. Silecs, J. Paulasaari, J. T. Rantala, Pat. WO 172177,
2012.
Anodic dissolution of tin in alcohols (general procedure). Diꢀ
rect current (the current density and amount of passed electriciꢀ
ty are indicated in Table 1) was passed in an argon atmosphere at
30 °C through an alcoholic solution (20 mL) of sodium acetate
(20 mg, 0.25 mmol) in an undivided cell with external cooling
equipped with a tin anode and iron cathode (surface area of the
electrodes 5 cm2). After the end of electrolysis, the electrodes
were carefully taken from the cell and purified. A white precipiꢀ
tate formed in the volume was rapidly filtered off and dried in
a desiccator over Р2О5.
Tin(II) oxymethylate (3а). Found (%): Sn, 78.72; С, 5.52;
Н, 1.42. С2H6O4Sn3. Calculated (%): Sn, 79.11; С, 5.34; Н, 1.34.
Readily hydrolyzed with air moisture.
Tin(II) oxyethylate(3b). Found (%): Sn, 74.14; С, 10.17; Н, 2.17.
C4H10O4Sn3. Calculated (%): Sn, 74.47; С, 10.05; Н, 2.11.
Readily hydrolyzed with air moisture.
Tin(II) oxyhydroxide (2). 119Sn NMR (CD2Cl2, 149.2 MHz),
δ: –74 (s, J = 1200 Hz). Found (%): Sn, 84.12; Н, 0.52. H2O4Sn3.
Calculated (%): Sn, 84.36; Н, 0.48. The diffraction patterns were
refined by the Rietveld method in the TOPAS 4.2 program.18 All
observed peaks corresponded to the structure of Sn3O2(OH)2
described in the literature.13 Line broadening was refined using
the Williamson—Hall method,14 and the predominant orientaꢀ
tion of the sample was described by spherical harmonics of the
fourth order. The final refinement has the following R factors:
RWP/RWP´/RBragg are 3.68/12.62/1.05%, respectively.
6. E. Wilhelm, H. Lehmkuhl, G. Wilke, Pat. FRG 2.349.561,
1974; Chem. Abstrs, 1974, 81, 20237.
7. H. Lehmkuhl, E. Wilhelm, Liebigs Ann. Chem., 1975, 672.
8. E. Wilhelm, H. Lehmkuhl, G. Wilke, Pat. Canada 1.024.466,
1978; Chem. Abstrs, 1978, 88, 160737.
9. M. Yu. Berezkin, I. N. Chernykh, E. G. Polyakov, A. P.
Tomilov, Zh. Prikl. Khim., 2006, 79, 752 [J. Appl. Chem.
(Engl. Transl.), 2006, 79].
10. M. Yu. Berezkin, E. G. Polyakov, V. V. Turygin, A. P. Tomꢀ
ilov, Elektrokhimiya, 2007, 43, 1265 [Russ. J. Electrochem.
(Engl. Transl.), 2007, 43].
11. Pat. Fr 2.091.229, 1972; Chem. Abstrs, 1972, 77, 96297.
12. A. N. Vereshchagin, M. N. Elinson, I. V. Krylova, R. A.
Novikov, M. P. Egorov, Russ. Chem. Bull. (Int. Ed.), 2015,
64, 464 [Izv. Akad. Nauk, Ser. Khim., 2015, 464].
13. I. Abrahams, S. M. Grimes, S. R. Johnston, J. C. Knowles,
Acta Crystallogr., Sect. C, 1996, 52, 286.
14. D. Balzar,Voigtꢀfunction Model in Diffraction Lineꢀbroadenꢀ
ing Analysis in Defect and Microstructure Analysis by Diffracꢀ
tion, Eds R. L. Snyder, J. Fiala, H. J. Bunge, Oxford Univerꢀ
sity Press, 1999.
15. J.ꢀH. Kim, G.ꢀJ. Jeong, Y.ꢀW. Kim, H.ꢀJ. Sohn, C. W. Park,
C. K. Lee, J. Electrochem. Soc., 2003, 150, A1544.
16. C. J. Pelliccione, E. V. Timofeeva, C. U. Segre, Chem.
Mater., 2015, 27, 574.
17. S. A. Awad, A. Kassab, J. Electroanal. Chem., 1970, 26, 127.
18. Bruker TOPAS 4.2 User Manual, Karlsruhe, Germany, Brukꢀ
er AXS GmbH, 2009.
The authors are grateful to coworkers of the departꢀ
ment of Structural Research of the N. D. Zelinsky Instiꢀ
tute of Organic Chemistry (Russian Academy of Sciences)
for studies of samples by electron microscopy.
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 13ꢀ03ꢀ12237ꢀ
ofiꢀm).
19. V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov,
A. A. Grachev, S. S. Zalesskiy, V. P. Ananikov, Russ. Chem.
Rev. (Engl. Transl.), 2013, 82, 648.
20. A. S. Kashin, V. P. Ananikov, Russ. Chem. Bull. (Int. Ed.),
2011, 60, 2602 [Izv. Akad. Nauk, Ser. Khim., 2011, 2551].
References
1. D. C. Bradley, R. C. Mehrotra, D. P. Gaur, Metal Alkoxides,
Received January 11, 2016;
Academic Press, London, 1978.
in revised form January 25, 2016