Paper
Dalton Transactions
(c) L. Chen, J.-Y. Guo, X. Xu, W.-W. Ju, D. Zhang, D.-R. Zhu
and Y. Xu, Chem. Commun., 2013, 49, 9728–9730; (d) X. Gu
and D. Xue, Inorg. Chem., 2007, 46, 3212–3216;
(e) T.-Q. Song, J. Dong, A.-F. Yang, X.-J. Che, H.-L. Gao,
J.-Z. Cui and B. Zhao, Inorg. Chem., 2018, 57, 3144–3150;
(f) X.-Y. Zheng, J.-B. Peng, X.-J. Kong, L.-S. Long and
L.-S. Zheng, Inorg. Chem. Front., 2016, 3, 320–325.
4 (a) L. Bogani, L. Cavigli, M. Gurioli, R. L. Novak,
M. Mannini, A. Caneschi, F. Pineider, R. Sessoli,
M. Clemente-Leon, E. Coronado, A. Cornia and
D. Gatteschi, Adv. Mater., 2007, 19, 3906–3911;
(b) C. Cervetti, E. Heintze and L. Bogani, Dalton Trans.,
2014, 43, 4220–4232; (c) A. B. Canaj, D. I. Tzimopoulos,
D. A. Kalofolias, M. Siczek, T. Lis, M. Murrie and
C. J. Milios, Dalton Trans., 2018, 47, 12863–12867;
(d) A. Baniodeh, Y. Liang, C. E. Anson, N. Magnani,
A. K. Powell, A. N. Unterreiner, S. Seyfferle, M. Slota,
M. Dressel, L. Bogani and K. Goss, Adv. Funct. Mater., 2014,
24, 6280–6290; (e) B. Hussain, D. Savard, T. J. Burchell,
W. Wernsdorfer and M. Murugesu, Chem. Commun., 2009,
1100–1102; (f) X.-L. Li, H. Li, D.-M. Chen, C. Wang,
J.-F. Wu, J.-K. Tang, W. Shi and P. Cheng, Dalton Trans.,
2015, 44, 20316–20320.
Conclusions
In conclusion, two mononuclear complexes, [Dy(hni)
(NO3)2(DMF)2]·DMF (1·DMF) and [Dy(hni)2(H2O)2]·NO3·EtOH
(2·NO3·EtOH),
and
two
trinuclear
complexes,
[Dy3(hnc)3(DMF)6] (3) and [Gd3(hnc)3(DMF)6] (4), were pre-
pared from H-hni and H3-hnc ligands. The slow relaxation of
the magnetisation under an optimum field in complexes 1 and
2 confirm the single-ion magnet nature as well as complex 3 is
an SMM with energy barriers in the region of 80 K (0 Oe) and
81 K (2600 Oe), respectively. It is notable that the nitro- func-
tional group affected the coordination environments of the
DyIII ions in both complexes 1 and 2. It is also vital that
complex 3 is the first example of a trinuclear dysprosium
complex with an N–N pathway that is different with the
μ-phenoxide bridges between the lanthanide ions of other tri-
angular coordination complexes. Indeed, the electron-with-
drawing group, NO2, was introduced at the para-position,
which is away from the O,N,O,O-based multi-chelating sites.
However, totally different coordination geometries or ligand
conformations were observed in complexes 1–4 in comparison
with other complexes synthesized by Schiff-base ligands with
the same coordination pockets. This novel idea of ligand
modification can provide rich and versatile coordination
chemistry concepts for future designs of multinuclear lantha-
nide complexes.
5 D. I. Plokhov, A. I. Popov and A. K. Zvezdin, Phys. Rev. B:
Condens. Matter Mater. Phys., 2011, 84, 224436.
6 (a) H. Schmid, J. Phys.: Condens. Matter, 2008, 20, 434201;
(b) S.-Y. Lin, W. Wernsdorfer, L. Ungur, A. K. Powell,
Y.-N. Guo, J.-K. Tang, L. Zhao and L. F. Chibotaru, Angew.
Chem., Int. Ed., 2012, 51, 12767–12771; (c) A. Soncini and
L. F. Chibotaru, Phys. Rev. B: Condens. Matter Mater. Phys.,
2008, 77, 220406; (d) J.-K. Tang, I. Hewitt, N. T. Madhu,
G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli,
R. Sessoli and A. K. Powell, Angew. Chem., Int. Ed., 2006, 45,
1729–1733; (e) L. Ungur, W. Van den Heuvel and
L. F. Chibotaru, New J. Chem., 2009, 33, 1224–1230;
(f) D. Gatteschi, R. Sessoli and L. Sorace, Handb. Phys.
Chem. Rare Earths, 2016, 50, 91–139; (g) J. Luzon,
K. Bernot, I. J. Hewitt, C. E. Anson, A. K. Powell and
R. Sessoli, Phys. Rev. Lett., 2008, 100, 247205; (h) M. Gysler,
F. El Hallak, L. Ungur, R. Marx, M. Hakl, P. Neugebauer,
Y. Rechkemmer, Y.-H. Lan, I. Sheikin, M. Orlita,
C. E. Anson, A. K. Powell, R. Sessoli, L. F. Chibotaru and
J. van Slageren, Chem. Sci., 2016, 7, 4347–4354;
(i) L. F. Chibotaru, L. Ungur and A. Soncini, Angew. Chem.,
Int. Ed., 2008, 47, 4126–4129.
7 (a) L. Zhang, P. Zhang, L. Zhao, J. Wu, M. Guo and J. Tang,
Inorg. Chem., 2015, 54, 5571–5578; (b) S.-Y. Lin, C. Wang,
L. Zhao and J. Tang, Chem. – Asian J., 2014, 9, 3558–3564;
(c) S.-Y. Lin, Y.-N. Guo, Y. Guo, L. Zhao, P. Zhang, H. Ke
and J. Tang, Chem. Commun., 2012, 48, 6924–6926;
(d) S. Xue, X.-H. Chen, L. Zhao, Y.-N. Guo and J. Tang,
Inorg. Chem., 2012, 51, 13264–13270; (e) Y.-X. Wang, W. Shi,
H. Li, Y. Song, L. Fang, Y. Lan, A. K. Powell,
W. Wernsdorfer, L. Ungur, L. F. Chibotaru, M. Shenc and
P. Cheng, Chem. Sci., 2012, 3, 3366–3370; (f) I. F. Díaz-
Ortega, J. M. Herrera, T. Gupta, G. Rajaraman, H. Nojiri
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by National Chung Hsing University
and the financial support from the Ministry of Science and
Technology, Taiwan (MOST107-2113 M-005-003 and 108-2113
M-005-023). We also thank Prof. Hui-Lien Tsai from National
Cheng Kung University for assistance with magnetic measure-
ments and Prof. Jérôme Long from University of Montpellier
for assistance with the fitting data (including the Raman
process and QTM).
Notes and references
1 (a) M. Murrie, Chem. Soc. Rev., 2010, 39, 1986–1995;
(b) D. N. Woodruff, R. E. P. Winpenny and R. A. Layfield,
Chem. Rev., 2013, 113, 5110–5148; (c) F. Habib and
M. Murugesu, Chem. Soc. Rev., 2013, 42, 3278–3288.
2 N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara and
Y. Kaizu, J. Am. Chem. Soc., 2003, 125, 8694–8695.
3 (a) M.-Y. Wu, F.-L. Jiang, X.-J. Kong, D.-Q. Yuan, L.-S. Long,
S. A. Al-Thabaiti and M.-C. Hong, Chem. Sci., 2013, 4, 3104–
3109; (b) X.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng and
Z. Zheng, J. Am. Chem. Soc., 2009, 131, 6918–6919;
17338 | Dalton Trans., 2019, 48, 17331–17339
This journal is © The Royal Society of Chemistry 2019