10.1002/anie.201811197
Angewandte Chemie International Edition
COMMUNICATION
Table 3. Complementary to the Pd-catalyzed desaturation.[a,b]
In summary, the first platinum-catalyzed desaturation of
carbonyl compounds has been developed. The reaction
operates at room temperature or 50 oC, with tolerating a wide
range of functional groups. Complementary features to the prior
palladium-catalyzed methods have been disclosed. Such a
unique chemoselectivity could be useful for complex molecule
synthesis. It is also anticipated that the unique mode of reactivity
discovered here should inspire the future exploration of other
platinum-catalyzed reactions.
O
O
Pt vs Pd cat.
'standard' condition
X
X
OH
OH
O
O
O
O
I
Br
O
9c, Pt: 90%[d]
Pd[e]: 0%[c,d]
9a, Pt: 68%[d]
Pd[e]: 0%[c,d]
9b, Pt: 65%[d]
Pd[e]: 18%[c,d]
I
O
PG
I
O
O
O
N
Acknowledgements
N
O
Br
PGF
9g, Pt: 75%[c]
Pd[e]: 0%[c]
I
9d, Pt: 72%[d]
Pd[e]: 24%[c,d]
We thank University of Chicago for a startup fund. M.C. thanks
Shanghai Institute of Organic Chemistry for a postdoc fellowship.
Professors Chuan He and Jack Halpern are thanked for the gifts
of platinum salts. Mr. Chengpeng Wang is acknowledged for
checking the experiments.
9e, PG = COC6F5, Pt: 92%; Pd[e]: 0%[c,d]
9f, PG = Ts,
Pt: 90%; Pd[e]: 0%[c,d]
OEt
O
9h, Pt: 88%[c]
Pd: 6%[c]
O
N
PGF
O
Br
O
S
PGF
N
O
O
O
Keywords: desaturation • lactam • ketone • lactone • platinum
I
catalysis
O
O
9i, Pt: 75%[d]
Pd[e]: 0%[c,d]
9j, Pt: 86%
Pd[e]: 0%[c]
[1] a) D. R. Buckle, I. L. Pinto, In Comprehensive Organic Synthesis, (Ed.: B.
M. Trost), Pergamon, Oxford, 1991, 7, 119; b) K. C. Nicolaou, N. A. Petasis,
Selenium in Natural Products Synthesis; CIS, Inc.: Philadelphia, 1984;
Chapter 3; c) J. Muzart, Eur. J. Org. Chem. 2010, 3779.
[a] Each reaction was run on a 0.2 mmol scale in a sealed 4 mL vial for 24 h.
[b] Isolated yields. [c] 50 oC was used. [d] PhF as solvent. [e] Pd condition: 10
mol% Pd(TFA)2 was used instead of Pt(COD)Cl2 and no AgTFA was added
(see Table 1, C10).
[2] a) R. C. Barcelos, J. C. Pastre, D. B. Vendramini-Costa, V. Caixeta, G. B.
Longato, P. A. Monteiro, J. E. Carvalho, R. A. Pilli, ChemMedChem 2014,
9, 2725; b) V. R. Rao, P. Muthenna, G. Shankaraiah, C. Akileshwari, K. H.
Babu, G. Suresh, K.S. Babu, R. S. C. Kumar, K. R. Prasad, P. A. Yadav, J.
M. Petrash, G. B. Reddy, J. M. Rao, Eur. J. Med. Chem. 2012, 57, 344; c)
Y. Dong, Q. Shi, Y-N. Liu, X. Wang, K. F. Bastow, K-H. Lee, J. Med. Chem.
2009, 52, 3586; d) X. Wang, K. F. Bastow, C-M. Sun, Y-L. Lin, H-J. Yu, M-
J. Don, T-S. Wu, S. Nakamura, K-H. Lee, J. Med. Chem. 2004, 47, 5816; e)
M. D. Méndez-Robles, H. H. Permady, M. E. Jaramillo-Flores, E. C. Lugo-
Cervantes, A. Cardador-Martinez, A. A. Canales-Aguirre, F. Lopez-
Dellamary, C. M. Cerda-Garcia-Martinez, A. A. Canales-Aguirre, F. Lopez-
Dellamary, C. M. Cerda-Garcia-Rojas, J. Tamariz, J. Nat. Prod. 2006, 69,
1140.
Scheme 3. Synthetic utilities.
[3] a) B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771; b) A. Gutnov,
Eur. J. Org. Chem. 2008, 4547; c) T. Hayashi, K. Yamasaki, Chem. Rev.
2003, 103, 2829; d) Z. Huang, G. Dong; Tetrahedron Lett. 2014, 55, 5869;
e) M. J. Chapdelaine, M. Hulce in Organic Reactions, Vol. 38, (Eds.: L. A.
Paquette), Wiley, New York, 1990, 225; f) Y. Chen, D. Huang, Y. Zhao, T.
R. Newhouse, Angew. Chem. Int. Ed. 2017, 56, 8258.
[4] a) S. S. Stahl, T. Diao, Comp. Org. Synth. 2014, 7, 178; b) D. Wang, A. B.
Weinstein, P. B. White,S. S. Stahl, Chem. Rev. 2018, 118, 2636; c) A.
Turlik, Y. Chen, T. R. Newhouse, Synlett 2016, 331.
[5] For leading references, see: a) R. J., Theissen, J. Org. Chem.1971, 36,
752. b) Y. Ito, T. Saegusa, J. Org. Chem. 1978, 43, 1011; c) Y. Izawa, D.
Pun, S. S. Stahl, Science 2011, 333, 209; d) D. Pun, T. Diao, S. S. Stahl, J.
Am. Chem. Soc. 2013, 135, 8213; e) T. Diao, S. S. Stahl, J. Am. Chem.
Soc. 2011, 133, 14566; f) T. Diao, D. Pun, S. S. Stahl, J. Am. Chem. Soc.
2013, 135, 8205; g) Y. Chen, J. P. Romaire, T. R. Newhouse, J. Am. Chem.
Soc. 2015, 137, 5875; h) Y. Chen, A. Turlik, T. R. Newhouse, J. Am. Chem.
Soc. 2016, 138, 1166; i) A. Turlik, Y. Chen, T. R. Newhouse, Synlett 2016,
27, 331; j) Y. Zhao, Y. Chen, T. R. Newhouse, Angew. Chem. Int. Ed.
2017, 56, 13122; k) D. Huang, Y. Zhao, T. R. Newhouse, Org. Lett. 2018,
20, 684; l) S. M. Szewczyk, Y. Zhao, H. A. Sakai, P. Dube, T. R. Newhouse,
Tetrahedron 2018, 74, 3293; m) M. Chen, G. Dong, J. Am. Chem. Soc.
2017, 139, 7757.
[a] 1.5 equiv 1,1'-biphenyl-3-ylboronic acid, 2.5 mol% [Rh(COD)Cl]2, 2 M
K3PO4 in dioxane, rt, 12 h; [b] 2 equiv PhB(OH)2, 5 mol% Pd(TFA)2, 6 mol%
bipyridine in 50 mM NaTFA, 100 oC, 6 h; [c] 4 equiv PhB(OH)2, 5 mol%
Pd(TFA)2, 6 mol% bipyridine in 50 mM NaTFA, 100 oC, 6 h; [d] 2.1 equiv
MeMgBr, 1.2 equiv CuBr•MS, 3 equiv TMSCl in THF, 2 h; [e] 1.1 equiv butane-
2-thiol and 5 mol% NaH in DCM, 50 oC, 12 h; [f] 2 equiv morpholine in toluene,
50 oC, 12 h; brsm: based on recovered starting material.
This article is protected by copyright. All rights reserved.