8246
stirred at the same temperature for 1 h. Usual work-up and purification afforded the hydroxyke-
tone 5a (141 mg) in 85% yield. Similarly compounds 5b and 5c were obtained in 88 and 81%
overall yields, respectively.
After having compounds 4a–c and 5a–c in hand, we are now checking their resolutions using
aldolase antibody 84G3. In our preliminary investigation, we have found that compound 4a
could be resolved in enantiomerically pure form using aldolase antibody 84G3 or its congeners,
85H6 and 93F3.3c
In conclusion, general methods for the synthesis of both regioisomers of fluoroaldols have
been found and applied to prepare the starting materials for fluoroepothilones. Studies toward
stereoselective addition of 10 with 6 to produce 11 (threo or erythro), antibody catalyzed
resolutions of 4 and 5, and total synthesis of fluoroepothilones using enantiomerically pure
fluoroaldols are in progress and will be reported in due course.
Acknowledgements
We thank the Skaggs Institute of Chemical Biology for financial support.
References
1. (a) Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.;
Woods, C. M. Cancer Res. 1995, 55, 2325. (b) Gerth, K.; Bedorf, N.; Hofle, G.; Irschik, H.; Reichenbach, H. J.
Antibiot. 1996, 49, 560. (c) Hofle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1567.
2. (a) Nicolaou, K. C.; Roschangar, F.; Vourloumis, D. Angew. Chem., Int. Ed. Engl. 1998, 37, 2014. (b) Nicolaou,
K. C.; Hepworth, D.; King, N. Paul; Finlay, M.; Ray, V. Pure Appl. Chem. 1999, 71, 989. (c) Harris, C. R.;
Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434, and references cited therein.
3. (a) For the total syntheses of epothilones A and C, see: Sinha, S. C.; Barbas III, C. F.; Lerner, R. A. Proc. Natl.
Acad. Sci. USA 1998, 95, 14603. (b) Total or formal syntheses of epothilones B, D and F, unpublished results.
(c) Formal syntheses of epothilone E, see: Sinha, S. C.; Sun, J.; Miller, G.; Barbas III, C. F.; Lerner, R. A. Org.
Lett. 1999, 1, 1623. (d) For synthesis of 13-alkyl epothilones: Sinha, S. C.; Sun, J.; Lerner, R. A., submitted for
publication.
4. (a) Wagner, J.; Lerner, R. A.; Barbas, C. F. Science 1995, 270, 1797. (b) Zhong, G.; Shabat, D.; List, B.;
Anderson, J.; Sinha, S. C.; Lerner, R. A.; Barbas, C. F. Angew. Chem., Int. Ed. Engl. 1998, 37, 2481. (c) List, B.;
Shabat, D.; Zhong, G.; Turner, J. M.; Li, A.; Bui, T.; Anderson, J.; Lerner, R. A.; Barbas, C. F. J. Am. Chem.
Soc. 1999, 121, 7283, and references cited therein.
5. Sinha, S. C.; Miller, G.; Sun, J.; Barbas III, C. F.; Lerner, R. A. Book of Abstracts, 217th ACS National
Meeting, Anaheim, CA, March 21–25, 1999.
6. Zhong, G.; Lerner, R. A.; Barbas, C. F. Angew. Chem., Int. Ed. Engl. 1999, 38, 3738.
7. Taylor, R. E.; Haley, J. D. Tetrahedron Lett. 1997, 38, 2061.
8. Brandsma, L.; De Jong, R. P. L.; VerKruijsse, H. D. Synthesis 1985, 948.
9. Compound 7c was prepared in two steps from glycolamide: protection of alcohol as TBDPS ether using
TBDPSCl and then conversion of amide to thioamide (for the latter step see: Schwarz, G. In Organic Syntheses;
Horning, E. C., Ed.; John Wiley & Sons: New York, 1955; Coll. Vol. III, pp. 332–333).
10. The borontriflate-mediated aldol reaction of fluoroacetone was found to be general, which lead to the formation
of aldol product not only with the thiazole aldehydes, but also with other aromatic and aliphatic aldehydes
tested.
11. Synthesis of a-fluoroketones via Weinreb type fluoro amide are known, see: Davis, F. A.; Kasu, P. V. N. Org.
Prep. Proc. Int. 1999, 31, 125.
.
.