ORGANIC
LETTERS
2000
Vol. 2, No. 25
3987-3990
Oligomers of Enantiopure Bicyclic
γ/δ-Amino Acids (BTAa). 1. Synthesis
and Conformational Analysis of
3-Aza-6,8-dioxabicyclo[3.2.1]octane-7-carboxylic
Acid Oligomers (PolyBTG)
Fabrizio Machetti, Alessandro Ferrali, Gloria Menchi, Ernesto G. Occhiato, and
Antonio Guarna*
Dipartimento di Chimica Organica “U. Schiff” and Centro di Studio sulla Chimica e
la Struttura dei Composti Eterociclici e loro Applicazioni, C.N.R., UniVersita` di
Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
Received September 5, 2000
ABSTRACT
A series of dimeric through pentameric oligomers of a bicyclic γ/δ-amino acid (BTG) were synthesized using peptide coupling methods in
solution with PyBroP or HATU. The analysis of 1H NMR and CD spectra suggests that these oligomers could have a partially ordered structure
in alcohol solutions.
Several homooligomers of noncoded R,1 â,2 γ,3 and δ4 amino
acids have been synthesized in recent years, and their
conformational proprieties have been extensively studied. It
has been demonstrated that these oligomers (named “fol-
damers” by Gellman)5 can adopt a variety of secondary
structures, including helices, sheets, and turns, depending
either on the number of units and the amino acid structure
(side chain substitution, configuration of the stereocenters,
etc.) or the external conditions (solvent, temperature, solid
state, etc.). Furthermore, the possibility that â-peptides could
adopt a tertiary structure has been recently suggested.6 The
great interest in the synthesis of these peptides has been also
stimulated by the observation that, similar to the proteins
and RNA, these oligomers can catalyze a wide range of
processes. For example, the synthetic application of polypep-
tides, with adopted folded structures, as catalyst in transes-
terification reactions has recently been reported.7
(1) For example: Yang, D.; Qu, J.; Li, B.; Ng, F.-F.; Wang, X.-C.;
Cheung, K.-K.; Wang, D.-P.; Wu, Y.-D. J. Am. Chem. Soc. 1999, 121,
589-590.
(2) (a) Seebach, D.; Abele, S.; Gademann, K.; Guichard, G.; Hintermann,
T.; Jaun, B.; Matthews, J. L.; Schreiber, J. HelV. Chim. Acta 1998, 81,
932-976 and references therein. (b) Appella, D. H.; Christianson, L. A.;
Klein, D. A.; Richards, M. R.; Powell, D. R.; Gellman, S. H. J. Am. Chem.
Soc. 1999, 121, 7574-7581 and references therein.
(3) (a) Hintermann, T.; Gademann, K.; Jaun, B.; Seebach, D. HelV. Chim.
Acta 1998, 81, 983-1002. (b) Hanessian, S.; Luo, X.; Schaum, R.;
Michnick, S. J. Am. Chem. Soc. 1998, 120, 8569-8570. (c) Hanessian, S.;
Luo, X.; Schaum, R. Tetrahedron Lett. 1999, 40, 4925-4929.
(4) (a) Szabo, L.; Smith, B. L.; McReynolds, K. D.; Parril, A. L.; Morris,
E. R.; Gervay, J. J. Org. Chem. 1998, 63, 1074-1078. (b) Smith, M. D.;
Claridge, T. D. Tranter, G. E.; Sansom, M. S. P.; W.; Fleet, G. W. J. J.
Chem. Soc., Chem. Commun. 1998, 2041-2042. (c) Long, D. D.; Hunger-
ford, N. L.; Smith, M. D.; Brittain, D. E. A.; Marquess, D. G.; Claridge, T.
D. W.; Fleet, G. W. J. Tetrahedron Lett. 1999, 40, 2195-2198. (d) Claridge,
T. D. W.; Long, D. D.; Hungerford, N. L.; Aplin, R. T.; Smith, M. D.;
Marquess, D. G.; Fleet, G. W. J. Tetrahedron Lett. 1999, 40, 2199-2202.
(e) Schwalbe, H.; Wermuth, J.; Richter, C.; Szalma, S.; Eschenmoser, A.;
Quinkert, G. HelV. Chim. Acta 2000, 83, 1079-1107.
(5) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173-180.
(6) Appella, D. H.; Christianson, L. A.; Karle, L. I.; Powell, D. R.;
Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 6206-6212.
(7) Rossi, P.; Felluga, F.; Tecilla, P.; Formaggio, F.; Crisma, M.; Toniolo,
C.; Scrimin, P. J. Am. Chem. Soc. 1999, 121, 6948-6948 and references
therein.
10.1021/ol006548s CCC: $19.00 © 2000 American Chemical Society
Published on Web 11/11/2000