¶ Crystal data for 2a: C20H24O11S2, M = 504.52, monoclinic, space group
P21, a = 10.7470(3), b = 8.3113(2), c = 13.5613(4) Å, β = 100.4321(12)Њ,
V = 1191.3 Å3, Z = 2, T = 150 K, µ = 0.280 mmϪ1, reflections measured =
10203, unique reflections = 4759, Rint = 0.024, R = 0.0417, wR = 0.0465.
b3/b306990g/ for crystallographic data in CIF or other electronic
format.
|| It should be noted that 10–20 equivalents of reagent represents a
stoichiometry that is well below that typically used in protein modifi-
cations, which are often of the order of 1000 equivalents. See B. G.
Davis, Curr. Opin. Biotechnol., 2003, 14, in press.
** These investigations include the potential use of other thiosulfonates
such as para-nitrophenylthiosulfonates (pNPTS).
1 R. A. Dwek, Chem. Rev., 1996, 96, 683.
2 B. G. Davis, Chem. Rev., 2002, 102, 579.
3 T. W. Rademacher, R. B. Parekh and R. A. Dwek, Annu. Rev. Bio-
chem., 1988, 57, 785.
Fig. 3 UV Monitoring of the PTS group: the presence of the 265 nm
PhSO2– chromophore in the PTS group allows the monitoring of its
presence and hence glycosylation. This is illustrated by UV absorbance
spectra of solutions of 2c (black) and NaPTS (grey) with 6c (1.85 mM
of each component in 1 : 1 pH 7 HEPES : CH3CN) which show reduced
absorbance at 265 nm for the PhSO2 anion as compared with glyco-
PTS 2c.
4 For leading and recent additional examples see: (a) K. Witte,
P. Sears, R. Martin and C.-H. Wong, J. Am. Chem. Soc., 1997, 119,
2114; (b) B. G. Davis, R. C. Lloyd and J. B. Jones, J. Org. Chem.,
1998, 63, 9614; (c) Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent,
J. A. Ellman and C. R. Bertozzi, J. Am. Chem. Soc., 1999, 121,
11684; (d ) D. Macmillan, R. M. Bill, K. A. Sage, D. Fern and S. L.
Flitsch, Chem. Biol., 2001, 8, 133; (e) H. Liu, L. Wang, A. Brock,
C.-H. Wong and P. G. Schultz, J. Am. Chem. Soc., 2003, 125, 1702.
5 B. G. Davis, M. A. T. Maughan, M. P. Green, A. Ullman and
J. B. Jones, Tetrahedron: Asymmetry, 2000, 11, 245.
6 G. L. Kenyon and T. W. Bruice, Methods Enzymol., 1977, 47, 407.
7 R. Wynn and F. M. Richards, Methods Enzymol., 1995, 251, 351.
8 P. Berglund, G. DeSantis, M. R. Stabile, X. Shang, M. Gold,
R. R. Bott, T. P. Graycar, T. H. Lau, C. Mitchinson and J. B. Jones,
J. Am. Chem. Soc., 1997, 119, 5265.
Ϫ
In summary, this communication describes the synthesis of
glyco-PTS reagents 2a–d of double utility not only as protein,
peptide and thiol glycosylating reagents but also as reagents
that may be used for the preparation of glycosyl disulfide glyco-
syl donors such as 5a–d.21 Moreover, the successful use of phe-
nylthiosulfonates as protein modifying reagents, demonstrated
here for carbohydrate modifications, highlights the potentially
broader utility of other PTS reagents as improved variants of
their useful MTS counterparts.6,7
9 G. DeSantis and J. B. Jones, Curr. Opin. Biotechnol., 1999, 10, 324.
10 K. Matsumoto, B. G. Davis and J. B. Jones, Chem. Eur. J., 2002, 8,
4129.
Acknowledgements
11 For select examples see: J. I. Brauman, W. N. Olmstead and
C. A. Lieder, J. Am. Chem. Soc., 1974, 96, 4030; P. J. Stang and
A. G. Anderson, J. Org. Chem., 1976, 41, 781; M. J. Gresser
and W. P. Jencks, J. Am. Chem. Soc., 1977, 99, 6970; D. N. Kevill and
G. M. L. Lin, Tetrahedron Lett., 1978, 949; M. J. Pellerite and
J. I. Brauman, J. Am. Chem. Soc., 1980, 102, 5993; A. Arcoria,
F. P. Ballistreri, G. Musumarra and G. A. Tomaselli, J. Chem. Soc.,
Perkin Trans. 2, 1981, 221; K. B. Sloan and S. A. M. Koch, J. Org.
Chem., 1983, 48, 3777.
We thank the EPSRC (D. P. G., S. J. W.) and Glycoform for
funding (D. P. G., P. G.); Mario Polywka for useful discussions;
Barbara O’Dell, Tim D. Claridge, Andrew R. Cowley, Joanna
Kirkpatrick for invaluable technical support and the EPSRC
for access to the Mass Spectrometry Service at Swansea, the
Chemical Database Service at Daresbury and for the award of
quota (S. J. W.) and DTA (D. P. G.) studentships.
12 R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc., 1953, 75,
2439.
13 P. G. Scheurer and F. J. Smith, J. Am. Chem. Soc., 1954, 76,
Notes and references
3224.
§ The Gene Ontology Consortium has defined biological process term
number GO:0006486 protein amino acid glycosylation as “The addition
of a sugar unit to a protein amino acid, e.g. the addition of glycan
chains to proteins.” [see Genome Res., 2001, 11, 1425.]. In this
communication we similarly use the term glycosylation to refer to the
general process of addition of a glycosyl unit to another moiety via a
covalent linkage. Glycation has also been suggested by the IUPAC-IUB
Joint Commission on Biochemical Nomenclature (JCBN) [see Eur. J.
Biochem., 1986, 159, 1; 1989, 185, 485; Glycoconjugate J., 1986, 3, 123;
J. Biol. Chem., 1987, 262, 13; Pure Appl. Chem., 1988, 60, 1389; Amino
Acids Pept., 1990, 21, 329; and in Biochemical Nomenclature and
Related Documents, 2nd edition, Portland Press, London, 1992, pp. 84–
89] as a general term for the product of all reactions that covalently link
a sugar starting molecule to a protein or peptide.
14 H. P. Wessel and D. Bundle, J. Chem. Soc., Perkin Trans. 1, 1985,
2251.
15 T. G. R. Sato, Y. Takakawa and S. Takizawa, Synthesis, 1980, 615.
16 2003 preparation costs: 1 g of NaMTS £11.02, 1 g of NaPTS
£1.21.
17 G. Wulff and G. Röhle, Angew. Chem., Int. Ed. Engl., 1974, 13, 157.
18 A. Marra, J. Esnault, A. Veyrières and P. Sinaÿ, J. Am. Chem. Soc.,
1992, 114, 6354.
19 G. L. Ellman, K. D. Courtney, V. Andres and R. M. Featherstone,
Biochem. Pharmacol., 1961, 7, 88.
20 For one other convergent trisaccharide-protein glycosylation see ref.
4e.
21 B. G. Davis, S. J. Ward and P. M. Rendle, Chem. Commun., 2001,
189.
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 3 6 4 2 – 3 6 4 4
3644