Baciocchi et al.
SCHEME 1
polymerization.3e Moreover, it has also been exploited as a
mechanistic probe in the enzymatic oxidations of sulfides.1t,4
In this context, studies of the fragmentation reactions of
sulfide radical cations aimed at acquiring information on the
structural effects upon kinetics and mechanism are certainly
warranted.
Recently, we have reported a very detailed kinetic study of
the fragmentation reactions of 2-arylsulfanyl alcohol radical
cations [Scheme 1, X ) CH(OH)Ph] that involve the OH-
assisted cleavage of a C-C bond.1c We have now carried out
a kinetic and products study of the fragmentation reactions of
the radical cations of silyl sulfides 1 and 2 and the thioacetic
acids 3 and 4.
FIGURE 1. Time-resolved absorption spectra of the NMQ+ (1.1 ×
10-3 M)/toluene (1 M)/3 (1.0 × 10-2 M) system in CH3CN: (a) N2-
saturated, recorded 0.016 (4), 0.35 (2), 1.4 (O), and 3.2 (b) µs after
the laser pulse and (b) O2-saturated, recorded 0.016 (4), 0.35 (2), 1.4
(O), and 3.2 (b) µs after the laser pulse. Insets: decay kinetics recorded
at 530 nm (1) and 340 nm (2). λecc ) 355 nm.
The fragmentation reaction involves the cleavage of the C-Si
bond in 1+• and 2+• and the cleavage of the C-C bond, with
CO2 loss, in 3+• and 4+•. Some information on the decarboxy-
lation of 3+• has already been reported,1h but no kinetic study
was carried out. The radical cations 1+•-4+• were generated
by sensitized photolysis, mostly with N-methylquinolinium
SCHEME 2
tetrafluoroborate (NMQ+) as the sensitizer. Fragmentation
kinetics were studied by the laser flash photolysis techniques,
and products were determined in steady-state photolysis experi-
ments. The results of this study are reported herein.
(1) (a) Filipiak, P.; Hug, G. L.; Carmichael, I.; Korzeniowska-Sobczuk,
A.; Bobrowski, K.; Marciniak, B. J. Phys. Chem. A 2004, 108, 6503. (b)
Huang, M. L.; Rauk, A. J. Phys. Chem. A 2004, 108, 6222. (c) Baciocchi,
E.; Del Giacco, T.; Elisei, F.; Gerini, M. F.; Lapi, A.; Liberali, P.; Uzzoli,
B. J. Org. Chem. 2004, 69, 8323. (d) Baciocchi E.; Gerini, M. F. J. Phys.
Chem. A 2004, 108, 2332. (e) Scho¨neich, C.; Pogocki, D.; Hug, G. L.;
Bobrowski K. J. Am. Chem. Soc. 2003, 125, 13700. (f) Scho¨neich, C. Arch.
Biochem. Biophys. 2002, 397, 370. (g) Butterfield D. A.; Kanski, J. Peptides
2002, 23, 1299 (h) Korzeniowska-Sobczuk, A.; Hug, G. L.; Carmichael,
I.; Bobrowski, K. J. Phys. Chem. A 2002, 106, 9251. (i) Gawandi, V. B.;
Mohan, H.; Mittal, J. P. J. Phys. Chem. A 2000, 104, 11877. (j) Bonifae`iæ,
M.; Hug, G. L.; Scho¨neich, C. J. Phys. Chem. A 2000, 104, 1240. (k) Glass,
R. S. Topics Curr. Chem. 1999, 205, 1. (l) Yokoi, H.; Hatta, A.; Ishiguro,
K.; Sawaki Y. J. Am. Chem. Soc. 1998, 120, 12728. (m) Miller, B. L.;
Kuczera, K.; Scho¨neich, C. J. Am. Chem. Soc. 1998, 120, 3345. (n) Adam,
W.; Argu¨ello, J. E.; Pen˜e´n˜ory, A. B. J. Org. Chem. 1998, 63, 3905. (o)
Ioele, M.; Steenken, S.; Baciocchi, E. J. Phys. Chem. A 1997, 101, 2979.
(p) Fasani, E.; Freccero, M.; Mella, M.; Albini, A. Tetrahedron 1997, 53,
2219. (q) Mohan, H.; Mittal, J. P. J. Phys. Chem. A 1997, 101, 10012. (r)
Miller, B. L.; Williams, T. D.; Scho¨neich, C. J. Am. Chem. Soc. 1996, 118,
11014. (s) Goez, M.; Rozwadowski, J.; Marciniak, B. J. Am. Chem. Soc.
1996, 118, 2882. (t) Baciocchi, E.; Lanzalunga, O.; Malandrucco, S.; Ioele,
M.; Steenken, S. J. Am. Chem. Soc. 1996, 118, 8973.
Results
Laser Flash Photolysis Studies. The laser photolysis experi-
ments were carried out in the presence of 1 M toluene as
cosensitizer. Under these conditions, the sequence of reactions
a and b, in Scheme 2, takes place (T ) toluene and S ) sulfide),
which leads to a significant increase in the yield of separated
radical cations.5
Upon laser excitation (λexc ) 308 and/or 355 nm) of CH3CN
solutions of NMQ+/toluene/1-4, time-resolved absorption
spectra and decay kinetics were recorded under N2- and O2-
saturated conditions. Since the results were very similar for all
sulfides examined, only those concerning the sulfides 3 and 4
will be illustrated in detail. Absorption maxima and transients
observed with the other substrates are reported in the Supporting
Information (Table S1).
(2) (a) Gould, I. R.; Lenhard, J. R.; Farid, S. J. Phys. Chem. A 2004,
108, 10949 and references therein. (b) Shukla, D.; Liu, G.; Dinnocenzo, J.
P.; Farid, S. Can. J. Chem. 2003, 81, 744. (c) Carra, C.; Ghigo, G.;
Tonachini, G. J. Org. Chem. 2003, 68, 6083. (d) Freccero, M.; Pratt, A.;
Albini, A.; Long, C. J. Am. Chem. Soc. 1998, 120, 284. (e) Zhang, X.;
Yeh, S.-R.; Hong, S.; Freccero, M.; Albini, A.; Falvey, D. E.; Mariano, P.
S. J. Am. Chem. Soc. 1994, 116, 4211.
By laser photolysis of 3 in N2-saturated solutions, three
absorption bands were detected just after the laser pulse in the
400, 530, and 750 nm regions (Figure 1a). They were assigned
to NMQ• (λmax) 400 and 550 nm)6 and the monomer (λmax
530 nm) and the π-type dimer sulfide radical cations (λmax
)
≈
(3) (a) Gould, I. R.; Godleski, S. A.; Zielinski, P. A.; Farid, S. Can. J.
Chem. 2003, 81, 777. (b) Gould, I. R.; Lenhard, J. R.; Muenter, A. A.;
Godleski, S. A.; Farid, S. Pure Appl. Chem. 2001, 73, 455. (c) Gould, I.
R.; Lenhard, J. R.; Muenter, A. A.; Godleski, S. A.; Farid, S. J. Am. Chem.
Soc. 2000, 122, 11934. (d) Albini, A.; Fagnoni, M.; Mella, M. Pure Appl.
Chem. 2000, 72, 1321. (e) Wrzszczyn˜ski, A.; Filipiak, P.; Hug, G. L.;
Marciniak, B.; Pc¸zkowski, J. Macromolecules 2000, 33, 1577.
750 nm).1l The time-evolution of the absorption spectra shows
that the signal decay recorded at 530 nm is coupled with the
growth of a further maximum at 340 nm region assigned to the
(5) Gould, I. R.; Ege, D.; Mosh, J. E.; Farid, S. J. Am. Chem. Soc. 1990,
112, 4290.
(6) Bockman, T. M.; Kochi, J. K. J. Am. Chem. Soc. 1989, 111, 4669.
(4) Pen˜e´n˜ory, A. B.; Argu¨ello, J. E.; Puiatti, M. Eur. J. Org. Chem. 2005,
10, 114.
854 J. Org. Chem., Vol. 71, No. 3, 2006