Communication
ChemComm
5
For papers on dual radical enabled difunctionalization of alkenyl
oximes, see: (a) B. Han, X.-L. Yang, R. Fang, W. Yu, C. Wang,
X.-Y. Duan and S. Liu, Angew. Chem., Int. Ed., 2012, 51, 8816;
(b) Y.-T. He, L.-H. Li, Y.-F. Yang, Y.-Q. Wang, J.-Y. Luo, X.-Y. Liu
and Y.-M. Liang, Chem. Commun., 2013, 49, 5687; (c) L. Zhu, G. Wang,
Q. Guo, Z. Xu, D. Zhang and R. Wang, Org. Lett., 2014, 16, 5390;
(d) W. Zhang, Y. Su, K.-H. Wang, L. Wu, B. Chang, Y. Shi, D. Huang
and Y. Hu, Org. Lett., 2017, 19, 376; (e) X.-X. Peng, Y.-J. Deng,
X.-L. Yang, L. Zhang, W. Yu and B. Han, Org. Lett., 2014, 16, 4650;
( f ) L. Zhu, H. Yu, Z. Xu, X. Jiang, L. Lin and R. Wang, Org. Lett., 2014,
16, 1562; (g) Q. Wei, J.-R. Chen, X.-Q. Hu, X.-C. Yang, B. Lu and
W.-J. Xiao, Org. Lett., 2015, 17, 4464; (h) F. Chen, X.-L. Yang, Z.-W. Wu
and B. Han, J. Org. Chem., 2016, 81, 3042; (i) R.-H. Liu, D. Wei, B. Han
and W. Yu, ACS Catal., 2016, 6, 6525; ( j) L.-J. Wang, M. Chen, L. Qi,
Z. Xu and W. Li, Chem. Commun., 2017, 53, 2056; (k) F. Meng,
H. Zhang, K. Guo, J. Dong, A.-M. Lu and Y. Zhu, J. Org. Chem.,
2017, 82, 10742; (l) F. Chen, F.-F. Zhu, M. Zhang, R.-H. Liu, W. Yu and
B. Han, Org. Lett., 2017, 19, 3255; (m) X.-T. Li, Q.-S. Gu, X.-Y. Dong,
X. Meng and X.-Y. Liu, Angew. Chem., Int. Ed., 2018, 57, 7668;
(n) W.-J. Han, Y.-R. Wang, J.-W. Zhang, F. Chen, B. Zhou and
B. Han, Org. Lett., 2018, 20, 2960; (o) D.-J. Wang, B.-Y. Chen,
Y.-Q. Wang and X.-W. Zhang, Eur. J. Org. Chem., 2018, 1342;
(p) Z.-Q. Xu, L.-C. Zheng, L. Li, L. Duan and Y.-M. Li, Org. Biomol.
Chem., 2019, 17, 898; (q) X.-W. Zhang, Z.-F. Xiao, M.-M. Wang,
Y.-J. Zhuang and Y.-B. Kang, Org. Biomol. Chem., 2016, 14, 7275;
(r) X.-Q. Hu, J. Chen, J.-R. Chen, D.-M. Yan and W.-J. Xiao, Chem. –
Eur. J., 2016, 22, 14141; (s) X.-L. Yang, F. Chen, N.-N. Zhou, W. Yu and
B. Han, Org. Lett., 2014, 16, 6476.
On the other hand, intramolecular 5-exo-trig O-cyclization of
the intermediate F0 affords the O-heterocyclic radical inter-
mediates G0, which sequentially undergoes coupling with the
intermediate C to deliver the C–CuIII–OBz intermediate H0 and
then reductive elimination to access the desired O-heterocycle
product 5 and regenerate the active CuILn species.5
In summary, we have developed a new copper-catalyzed two-
component amino-benzoyloxylation of unactivated alkenes of
unsaturated ketoximes with O-benzoylhydroxylamines for selec-
tively producing cyclic nitrones and isoxazolines under
external-oxidant-free conditions. This method enables the pre-
ferential formation of the benzoyloxyl radical intermediates to
form two new carbon–heteroatom bonds in a single reaction
step, and represents the first external-oxidant-free copper-catalyzed
alkene amino-benzoyloxylation route through intermolecular cross
coupling with the benzoyloxyl radicals using O-benzoylhydroxyl-
amines as the benzoyloxyl sources and internal oxidants.
The authors thank the National Natural Science Foundation
of China (No. 21625203 and 21871126) and the Talent Induc-
tion Program for Youth Innovation Teams in Colleges and
Universities of Shandong Province for financial support.
6 O-Benzoylhydroxylamines are well-known organic building blocks,
especially serving as the amino sources and internal oxidants, in
synthesis. For selected reviews and papers, see: (a) X. Dong, Q. Liu,
Y. Dong and H. Liu, Chem. – Eur. J., 2017, 23, 2481; (b) Y. S. Sabir,
G. Kumarb and J. L. Jat, Org. Biomol. Chem., 2018, 16, 3314; (c) L. Lei,
C. Li and D. Mo, Chin. J. Org. Chem., 2019, 39, 2989; (d) R. Sakae,
K. Hirano and M. Miura, J. Am. Chem. Soc., 2015, 137, 6460;
(e) K. Shen and Q. Wang, Chem. Sci., 2015, 6, 4279; ( f ) Y. Yang,
S.-L. Shi, D. Niu, P. Liu and S. L. Buchwald, Science, 2015, 349, 62;
(g) B. N. Hemric, K. Shen and Q. Wang, J. Am. Chem. Soc., 2016,
138, 5813; (h) B. N. Hemric and Q. Wang, Beilstein J. Org. Chem., 2016,
12, 22; (i) K. Kato, K. Hirano and M. Miura, Angew. Chem., Int. Ed.,
2016, 55, 14400; ( j) F.-L. Wang, X.-Y. Dong, J.-S. Lin, Y. Zeng, G.-Y.
Jiao, Q.-S. Gu, X.-Q. Guo, C.-L. Ma and X.-Y. Liu, Chemistry, 2017,
3, 979; (k) J. Davies, S. P. Morcillo, J. J. Douglas and D. Leonori, Chem.
– Eur. J., 2018, 24, 12154; (l) L. J. Peterson, J. K. Kirsch and J. P. Wolfe,
Org. Lett., 2018, 20, 3513; (m) Z. Wang, M.-Y. Han, P. Li and L. Wang,
Eur. J. Org. Chem., 2018, 5954; (n) B. N. Hemric, A. W. Chen and
Q. Wang, ACS Catal., 2019, 9, 10070; (o) B. N. Hemric, A. W. Chen and
Q. Wang, J. Org. Chem., 2019, 84, 1468; (p) Z.-L. Yao, L. Wang,
N.-Q. Shao, Y.-L. Guo and D.-H. Wang, ACS Catal., 2019, 9, 7343;
(q) N.-Q. Shao, Z.-L. Yao and D.-H. Wang, Isr. J. Chem., 2020, 60, 429;
(r) Y. Kwon and Q. Wang, Org. Lett., 2020, 22, 4141; (s) W. Zhang,
C. Wang and Q. Wang, ACS Catal., 2020, 10, 13179; (t) S. Li, Q. Chen,
W. Li, G. Gu and J. Zhang, Chin. J. Chem., 2020, 38, 1116; (u) M. Noack
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For selected reviews see: (a) T. T. Dang, T. T. Dang and P. Langer,
Synlett, 2011, 2633; (b) K. Narasaka, Pure Appl. Chem., 2003, 75, 19;
(c) K. Narasaka and M. Kitamura, Eur. J. Med. Chem., 2005, 4505;
(d) J. Lei, D. Li and Q. Zhu, Heterocycl. Chem., 2018, 54, 285;
(e) C. Song, X. Shen, Y. Fang, Y. He and S. Yu, Chin. J. Org. Chem.,
2020, 40, 3748; ( f ) X.-Y. Yu, Q.-Q. Zhao, J. Chen, W.-J. Xiao and
J.-R. Chen, Acc. Chem. Res., 2020, 53, 1066; (g) I. B. Krylov,
S. A. Paveliev, A. S. Budnikov and A. O. Terent’ev, Beilstein J. Org.
Chem., 2020, 16, 1234.
2 For selected reviews, see: J. Liao, L. Ouyang, Q. Jin, J. Zhang, R. Luo
and R. Dalpozzo, Org. Biomol. Chem., 2020, 18, 4709.
3 For representative papers, see: (a) M. Tiecco, L. Testaferri, L. Bagnoli,
V. Purgatorio, A. Temperini, F. Marini and C. Santi, Tetrahedron:
Asymmetry, 2001, 12, 3297; (b) H. A. Dondas, R. Grigg,
M. Hadjisoteriou, J. Markandu and P. Kennewell, Tetrahedron,
2001, 57, 1119; (c) V. Karapetyan, S. Mkrtchyan, T. T. Dang,
A. Villinger, H. Reinke and P. Langer, Tetrahedron, 2008, 64, 8010;
(d) M. D. Mosher, A. L. Norman and K. A. Shurrush, Tetrahedron Lett.,
2009, 50, 5647; (e) W. Kong, Q. Guo, Z. Xu, G. Wang, X. Jiang and
R. Wang, Org. Lett., 2015, 17, 3686; ( f ) R. Suresh, A. K. Simlandy and
S. Mukherjee, Org. Lett., 2018, 20, 1300; (g) C. Ye, X. Kou, G. Yang,
J. Shen and W. Zhang, Tetrahedron Lett., 2019, 60, 1148;
(h) E. F. Lopes, F. Penteado, S. Thurow, M. Pinz, A. S. Reis,
E. A. Wilhelm, C. Luchese, T. Barcellos, B. Dalberto, D. Alves,
¨
and R. Gottlich, Chem. Commun., 2002, 536; (v) S. Ren, S. Song, L. Ye,
C. Feng and T.-P. Loh, Chem. Commun., 2016, 52, 10373;
(w) N. Matsuda, K. Hirano, T. Satoh and M. Miura, J. Am. Chem.
Soc., 2013, 135, 4934; (x) Y. Miki, K. Hirano, T. Satoh and M. Miura,
Org. Lett., 2014, 16, 1498; (y) B. N. Hemric, K. Shen and Q. Wang,
J. Am. Chem. Soc., 2016, 138, 5813; (z) D. Nishikawa, K. Hirano and
M. Miura, Org. Lett., 2016, 18, 4856.
7 (a) K. Kaur, V. Kumar, A. K. Sharma and G. K. Gupta, Eur. J. Med.
Chem., 2014, 77, 121; (b) S.-I. Murahashi and Y. Imada, Chem. Rev.,
2019, 119, 4684; (c) N. Agrawal and P. Mishra, Med. Chem. Res., 2018,
27, 1309; (d) L. L. Anderson, Diverse, Asian J. Org. Chem., 2016, 5, 9;
(e) T. M. V. D. Pinho e Melo, Curr. Org. Chem., 2005, 9, 925;
( f ) G. Kumar and R. Shankar, ChemMedChem, 2021, 16, 430.
˜
M. S. Silva and E. J. Lenardao, J. Org. Chem., 2019, 84, 12452.
4 For representative papers, see: (a) M.-K. Zhu, J.-F. Zhao and T.-P. Loh,
J. Am. Chem. Soc., 2010, 132, 6284; (b) D. Jiang, J. Peng and Y. Chen,
Org. Lett., 2008, 10, 1695; (c) B. Sun, S. Liu, M. Zhang, J. Zhao and
Q. Zhang, Org. Chem. Front., 2019, 6, 388; (d) A. A. Jimoh, S. Hosseyni,
X. Ye, L. Wojtas, Y. Hu and X. Shi, Chem. Commun., 2019, 55, 8150;
(e) L. Wang, K. Zhang, Y. Wang, W. Li, M. Chen and J. Zhang, 8 CCDC 2057134 (3ma) and 2057127 (6s) contains the supplementary
Angew. Chem., Int. Ed., 2020, 59, 4421.
crystallographic data for this paper†.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021