ACS Chemical Neuroscience
RESEARCH ARTICLE
were incubated with 50 μM PhENAQ (DMSO concentration 0.5% vol/
vol) for 15 min at room temperature and then washed 5 min prior to
recording. Slices were then placed on a tridimensional microarray made
of 60 pyramid-shape microelectrodes (MEA60 200 3D GND, Ayanda
Biosystems SA, Lausanne, Switzerland). Recordings were acquired with
an MEA-1060 amplifier board (gain 1200, sampling frequency 20 kHz,
Butterworth second order highpass filter 300 Hz, Multi Channel Systems,
Reutlingen, Germany) positioned on the stage of an inverted micro-
scope (Olympus IX71). Principal component analysis of spike wave-
forms was used for sorting spikes generated by individual cells (Offline
Sorter; Plexon, Denton, TX). Light was delivered using the 100 W
halogen lamp of the microscope and a 480/40 bandpass filter, and was
focused on the slice using a 4ꢁ objective (Olympus UPLanFL N, NA
0.13). Light was computer-controlled using a filter-wheel controller
(Lambda 10-3, Sutter Instruments) and an ultrafast shutter (Uniblitz
VCM-D1, Vincent Associates). Light intensity measured at the back of
the 4ꢁ objective and through the MEA was 17ꢀ28 mW/mm2. Slices
were continuously superfused during recording with fresh ACSF.
Statistics and Data Analysis. Data were analyzed using Clampfit
10 (Molecular Devices, Sunnyvale, CA), MC Rack (Multi Channel
Systems, Reutlingen, Germany), Offline Sorter (Plexon, Denton, TX),
and Origin (OriginLab, Northampton, MA) software. Statistical analysis
was performed using Origin. All values reported are mean ( SEM except
when stated.
(6) Hegemann, P., and Moglich, A. (2011) Channelrhodopsin
engineering and exploration of new optogenetic tools. Nat. Methods 8
(1), 39–42.
(7) Banghart, M. R., Mourot, A., Fortin, D. L., Yao, J. Z., Kramer,
R. H., and Trauner, D. (2009) Photochromic blockers of voltage-gated
potassium channels. Angew. Chem., Int. Ed. 48 (48), 9097–9101.
(8) Bartels, E., Wassermann, N. H., and Erlanger, B. F. (1971)
Photochromic activators of the acetylcholine receptor. Proc. Natl. Acad.
Sci. U.S.A. 68 (8), 1820–1823.
(9) Fortin, D. L., Banghart, M. R., Dunn, T. W., Borges, K.,
Wagenaar, D. A., Gaudry, Q., Karakossian, M. H., Otis, T. S., Kristan,
W. B., Trauner, D., and Kramer, R. H. (2008) Photochemical control of
endogenous ion channels and cellular excitability. Nat. Methods 5 (4),
331–338.
(10) Lester, H. A., and Chang, H. W. (1977) Response of acetylcho-
line receptors to rapid photochemically produced increases in agonist
concentration. Nature 266 (5600), 373–374.
(11) Knoll, H. Photoisomerization of Azobenzenes. In CRC Hand-
book of Organic Photochemistry and Photobiology; Horspool, W. M.,
Lenci, F., Eds.; CRC Press: Boca Raton, FL, 1996, 2nd ed., pp
89.1ꢀ89.16.
(12) Gorostiza, P., Volgraf, M., Numano, R., Szobota, S., Trauner,
D., and Isacoff, E. Y. (2007) Mechanisms of photoswitch conjugation
and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad.
Sci. U.S.A. 104 (26), 10865–10870.
(13) Sadovski, O., Beharry, A. A., Zhang, F., and Woolley, G. A.
(2009) Spectral tuning of azobenzene photoswitches for biological
applications. Angew. Chem., Int. Ed. 48 (8), 1484–1486.
(14) Schanze, K. S., Mattox, T. F., and Whitten, D. G. (1983) Solvent
Effects upon the Thermal Cis-Trans Isomerization and Charge-Transfer
Absorption of 4-(Diethylamino)-40-nitrobenzene. J. Org. Chem. 48 (17),
2808–2813.
(15) Whitten, D. G., Wildes, P. D., Pacifici, J. G., and Irick, G., Jr.
(1971) Solvent and substituent on the thermal isomerization of sub-
stituted azobenzenes. Flash spectroscopic study. J. Am. Chem. Soc. 93
(8), 2004–2008.
’ ASSOCIATED CONTENT
S
Supporting Information. Additional figures and experi-
b
mental procedures, and general experimental details. This ma-
org.
’ AUTHOR INFORMATION
(16) Kamei, T., Kudo, M., Akiyama, H., Wada, M., Nagasawa, J.,
Funahashi, M., Tamaoki, N., and Uyeda, T. Q. P. (2007) Visible-Light
Photoresponsivity of a 4-(Dimethylamino)azobenzene Unit Incorpo-
rated into Single-Stranded DNA: Demonstration of a Large Spectral
Change Accompanying Isomerization in DMSO and Detection of Rapid
(Z)-to-(E) Isomerization in Aqueous Solution. Eur. J. Org. Chem. 2007
(11), 1846–1853.
Corresponding Author
*E-mail: dirk.trauner@lmu.de.
Author Contributions
These authors contributed equally to this work.
Funding Sources
(17) Kamei, T., Akiyama, H., Morii, H., Tamaoki, N., and Uyeda,
T. Q. (2009) Visible-light photocontrol of (E)/(Z) isomerization of the
4-(dimethylamino)azobenzene pseudo-nucleotide unit incorporated
into an oligonucleotide and DNA hybridization in aqueous media.
Nucleosides, Nucleotides Nucleic Acids 28 (1), 12–28.
(18) Kessler, M., Kiliman, B., Humes, C., and Arai, A. C. (2008)
Spontaneous activity in Purkinje cells: multi-electrode recording from
organotypic cerebellar slice cultures. Brain Res. 1218, 54–69.
(19) Volgraf, M., Gorostiza, P., Szobota, S., Helix, M. R., Isacoff,
E. Y., and Trauner, D. (2007) Reversibly caged glutamate: a photo-
chromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129
(2), 260–261.
Support for the work was provided by the Nanomedicine Devel-
opment Center for the Optical Control of Biological Function,
PN2EY018241 (D.T. and R.H.K.), the National Institutes of
Health (RO1 EY018957 and RO1MH088484, R.H.K.), and the
Deutsche Forschungsgemeinschaft (SFB 749, D.T.).
’ ACKNOWLEDGMENT
We thank Caleb M. Smith for his help with the MEA data
analysis.
(20) Abrams, Z. R., Warrier, A., Trauner, D., and Zhang, X. (2010) A
Signal Processing Analysis of Purkinje Cells in vitro. Front. Neural
Circuits 4, 13.
(21) Banghart, M., Borges, K., Isacoff, E., Trauner, D., and Kramer,
R. H. (2004) Light-activated ion channels for remote control of neuronal
firing. Nat. Neurosci. 7 (12), 1381–1386.
(22) Chambers, J. J., Banghart, M. R., Trauner, D., and Kramer, R. H.
(2006) Light-induced depolarization of neurons using a modified Shaker
K(+) channel and a molecular photoswitch. J. Neurophysiol. 96 (5),
2792–2796.
’ REFERENCES
(1) Banghart, M. R., Volgraf, M., and Trauner, D. (2006) Engineer-
ing light-gated ion channels. Biochemistry 45 (51), 15129–15141.
(2) Gorostiza, P., and Isacoff, E. Y. (2008) Optical switches for
remote and noninvasive control of cell signaling. Science 322 (5900),
395–399.
(3) Kramer, R. H., Fortin, D. L., and Trauner, D. (2009) New photo-
chemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19
(5), 544–552.
(4) Mayer, G., and Heckel, A. (2006) Biologically active molecules
with a “light switch. Angew. Chem., Int. Ed. 45 (30), 4900–4921.
(5) Deisseroth, K. (2011) Optogenetics. Nat. Methods 8 (1), 26–29.
(23) Szobota, S., Gorostiza, P., Del Bene, F., Wyart, C., Fortin, D. L.,
Kolstad, K. D., Tulyathan, O., Volgraf, M., Numano, R., Aaron, H. L.,
Scott, E. K., Kramer, R. H., Flannery, J., Baier, H., Trauner, D., and
542
dx.doi.org/10.1021/cn200037p |ACS Chem. Neurosci. 2011, 2, 536–543