404
M. H. HABIBI AND E. ASKARI
fact that the tetradentate N2O2 ligands are coordinated as dian-
ions. The (C=N) band appearing at 1620 cm−1 in the ligands is
shifted to lower frequencies by 13–25 cm−1 in the correspond-
ing Mn complexes, indicating that the ligands are coordinated
to the metal ions through the imino groups.
CONCLUSION
We have prepared two new homo binuclear manganese(III)
complexes. X-ray structural analysis of complexes showed the
presence of dimanganese core in the complexes and the binding
of the ligands to the manganese(III) through N2O2. The dimeric
unit is formed by a double Mn–O bridge of one molecule. The
CV of complex demonstrate that complex present only a single
species in acetonitrile solution and the redox processes may be
described as Mn(III)/Mn(II) and Mn(II)/Mn(III).
REFERENCES
1. Emara, A.A. A. Spectrochim. Acta A 2010, 77, 117–125.
2. Shebl, M. Spectrochim. Acta A 2008, 70, 850.
3. Cerchiaro, G.; Ferreira, A.M. D. C. J. Brazil. Chem. Soc. 2006, 17, 1473.
4. Cozzi, P.G. Chem. Soc. Rev. 2004, 33, 410.
FIG. 5. Cyclic voltammogram of [Mn(L)(H2O)]2(PF6)2 in acetonitrile solu-
tion stored for 48 h at 293 K. Scan rate: 100 mV/s. c = 3.0 × 10−3
.
the complex adopts an octahedral environment of the imine
N and hydroxo O with the one axial H2O ligand around
manganese. There are two coordination/chelation environments
present around two manganese centers of each binuclear com-
plex. One axial position around each Mn is occupied by one
oxygen atom and another axial position by water. Manganese
oxygen bond distances in axial positions, Mn1–O5 2.21(9),
Mn1–O3(axi) 2.42(1) Å, are significantly longer than those in
the equatorial planes, consistent with the Jahn–Teller elongation
of high-spin d4 MnIII in the axial direction and the difference in
ligand type. For complex 1 the bond distances of N2O2 in equa-
torial positions are as followings: Mn1–O1 1.85(2), Mn1–O2
1.89(6), Mn1–N1 1.98(3), and Mn1–N2 1.97(6) Å.
5. Denmark, S.E.; Heemstra, J.R.; Beutner, G.L. Angew. Chem. Int. Ed. Engl.
2005, 44, 4682.
6. Huang, W.; Gou, S.; Hu, D.; Chantrapromma, S.; Fun, H.-K.; Meng, Q.
Inorg. Chem. 2001, 40, 1712.
7. Kaim, W.; Schwederski, B. Bioinorganic Chemistry: Inorganic Elements
in the Chemistry of Life; Wiley, New York, 1994.
8. Atakol, O.; Nazir, H.; Arici, C.; Durmus, S.; Svoboda, I.; Fuess, H. Inorg.
Chim. Acta 2003, 342, 295.
9. Ramadan, A.M.; Sawadny, W.; Issa, R.M.; El-Baradie, H.Y. F. Egypt J.
Chem. 2000, 43, 285.
10. Chohan, Z.H.; Pervez, H.; Rauf, A.; Scozzafava, A.; Supuran, C.T. J. En-
zyme Inhib. Med. Chem. 2002, 17, 122.
11. Serbest, K.; Colak, A.; Gu¨ner, S.; Karabo¨cek, S.; Kormalı, F. Transition
Met. Chem. 2001, 26, 625–629.
12. Serbest, K.; Karaoglu, K.; Erman, M.; Er, M.; Degirmencioglu, I. Spec-
trochim. Acta A 2010, 77, 643–651
13. Eltayeba, N.E.; Teoha, S.G.; Kusrinib, E.; Adnan, R.; Func, H.K. Spec-
trochim. Acta A 2010, 75, 453–457
14. Hung, L.S.; Chen, C.H. Mater. Sci. Eng. R: Rep. 2002, 39, 143.
15. Wang, P.; Xie, Z.; Hong, Z.; Tang, J.; Wong, O.; Lee, C.-S.; Wong, N.; Lee,
S.J. Mater. Chem. 2003, 13, 1894.
16. Tao, X.T.; Miyata, S.; Sasabe, H.; Zhang, G.J. Appl. Phys. Lett. 2001, 78,
279.
17. Yu, T.; Su, W.; Li, W.; Hong, Z.; Hua, R.; Li, B. Thin Solid Films 2007,
515, 4080.
Voltammetric Characterization
The CV of complex was measured in acetonitrile solution.
The CV exhibits irreversible mechanism (Figure 5). In cathodic
and anodic voltamogram, two peaks were observed which indi-
cates of reduction of Mn(III) to Mn(II) and oxidation of Mn(II)
to Mn(III). These results demonstrate that complex is dimmer in
solution phase and consistent with dimmer solid state structure.
Spectroscopic Properties
18. Shen, Y.-Z.; Gu, H.; Pan, Y.; Dong, G.; Wu, T.; Jin, X.-P.; Huang, X.-Y.;
Hu, H. J. Organomet. Chem. 2000, 605, 234.
19. Chen, T.-R. J. Mol. Struct. 2005, 737, 35.
20. B. Geeta, K. Shravankumar, Reddy, P.M.; Ravikrishna, E.; Sarangapani, M.;
Krishna Reddy, K.; Ravinder, V. Spectrochim. Acta A 2010, 77, 911–915.
21. Trujillo, A.; Sinbandhit, S.; Toupet, L.; Carrillo, D.; Manzur, C.; Hamon,
J.R. J. Inorg. Organomet. Polym. 2008, 18, 81–99.
22. Lozan, V.; Loose, C.; Kortus, J.; Kersting, B. Coord. Chem. Rev. 2009, 253,
2244–2260.
23. Sallam, S.A. Transit. Met. Chem. 2006, 31, 46–55.
24. Ali, M.A.; Mirza, A.H.; Nazimuddin, M.; Karim, F.; Bernhardt, P.V.
Inorg. Chim. Acta 2005, 358, 4548–4554.
25. Jeragh, B.J. A.; El-Dissouky, A. J. Coord. Chem. 2005, 58, 1029–1038.
26. Vigato, P.A.; Tamburini, S. Coord. Chem. Rev. 2004, 248, 1717–2128.
The electronic spectra of complexes 1 and 2 have maxima
at 238 and 345 nm for 1 and 237 and 360 nm for 2. The ab-
sorptions at 232 and 238 nm can be related to the spin allowed
π –π∗ azomethane intraligand transition.[42] The band at 360 nm
in the UV region can be assigned to spin-allowed metal-to-
ligand charge transfer transition.[43–45] FT-IR spectral data of the
complexes were compared with those of the uncomplexed lig-
and. N,Nꢁ-bis(2-hydroxy-5-methoxybenzylidene)propane-1,2-
diamine ligand show a broad band characteristic of the OH
group in the 3300–3500 cm−1 region. The disappearance of this
band in the FT-IR spectra of the complexes is indicative of the