9611
In summary, we have shown that organoboronic acids and 1,2-diamines can serve as versatile
precursors for the synthesis of peptidomimetics, such as 8 and 11. This direct approach to such
complex heterocycles from readily available components is very useful for the synthesis of
combinatorial libraries of these potentially bioactive molecules. Further use of this chemistry for
the synthesis of other heterocyclic systems is currently under way.
Acknowledgements
We gratefully acknowledge the National Institutes of Health (grant GM 45970) for support of
this research. We also thank the Loker Hydrocarbon Research Institute for a Harold Moulton
Graduate Fellowship to Z.D.P.
References
1. (a) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789. (b) Nefzi,
A.; Ostresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97, 449. (c) Babine, R. E.; Bender, S. L. Chem. Rev. 1997,
97, 1359. (d) Advances in Amino Acid Mimetics and Peptidomimetics; Abell, A., Ed.; Jai Press: Greenwich, CT,
1999; Vol. 2, pp. 1–301. (e) Franzen, R. G. J. Comb. Chem. 2000, 2, 195.
2. (a) Pohlmann, A.; Schanen, V.; Guillaume, D.; Quirion, J.-C.; Husson, H.-P. J. Org. Chem. 1997, 62, 1016. (b)
Shreder, K.; Zhang, L.; Goodman, M. Tetrahedron Lett. 1998, 39, 221. (c) Goff, D. A. Tetrahedron Lett. 1998, 39,
1473. (d) Weissman, S. A.; Lewis, S.; Askin, D.; Volante, R. P.; Reider, P. J. Tetrahedron Lett. 1998, 39, 7459. (e)
Hulme, C.; Peng, J.; Louridas, B.; Menard, P.; Krolikowski, P.; Kumar, N. V. Tetrahedron Lett. 1998, 39, 8047.
(f) Mohamed, N.; Bhatt, U.; Just, G. Tetrahedron Lett. 1998, 39, 8213. (g) Hansen, T. K.; Schlienger, N.; Hansen,
B. S.; Andersen, P. H.; Bryce, M. R. Tetrahedron Lett. 1999, 40, 3651. (h) Tong, Y.; Fobian, Y. M.; Wu, M.;
Boyd, N. D.; Moeller, K. D. J. Org. Chem. 2000, 65, 2484. (i) Dinsmore, C. J.; Zartman, C. B. Tetrahedron Lett.
2000, 41, 6309 and references cited therein.
3. (a) Lee, J.; Murray, W. V.; Rivero, R. A. J. Org. Chem. 1997, 62, 3874. (b) Morales, G. A.; Corbett, J. W.;
DeGrado, W. F. J. Org. Chem. 1998, 63, 1172. (c) Zaragoza, F.; Stephensen, H. J. Org. Chem. 1999, 64, 2555. (d)
Mazurov, A. Tetrahedron Lett. 2000, 41, 7.
4. (a) Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583. (b) Petasis, N. A.; Zavialov, I. A. J. Am.
Chem. Soc. 1997, 119, 445. (c) Petasis, N. A.; Goodman, A.; Zavialov, I. A. Tetrahedron 1997, 53, 16463. (d)
Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1998, 120, 11798.
5. (a) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196. (b) Ishihara, K.; Yamamoto, H. Eur. J.
Org. Chem. 1999, 527.
6. The indicated yields are of purified products, after flash column chromatography. All products gave satisfactory
spectroscopic and analytical data.
1
7. Data for 22: H NMR (250 MHz, CD3OD) l 7.48–7.20 (m, 15H), 6.76 (d, J=15.9 Hz, 1H), 6.33 (dd, J=15.9 Hz,
7.9 Hz, 1H), 4.64 (dd, J=17.5 Hz, 4.7 Hz, 1H), 3.92 (d, J=13.3 Hz, 1H), 3.86 (d, J=7.9 Hz, 1H), 3.43 (d, J=13.3
Hz, 1H), 3.23 (t, J=5.2 Hz, 2H), 3.02 (m, 1H), 2.54 (m, 1H). 13C NMR (62.5 MHz, CD3OD) l 170.52, 139.02,
137.91, 137.87, 137.06, 130.10, 129.78, 129.67, 129.47, 129.10, 128.97, 128.71, 128.42, 127.63, 126.32, 69.15, 59.43,
51.15, 46.82, 46.50. HRMS calcd for C26H27N2O+: 383.2045, found 383.2127.
.