COMMUNICATIONS
that were hardly soluble in the cleavage cocktail were washed off the solid
support with a suitable solvent. Before concentration cleavage solutions
were neutralized with pyridine. Analytical HPLC was carried out on C18
reversed-phase columns 4250 Â 4 mm) with linear gradients of acetonitrile
in water/0.1% TFA and a flow of 1 mLminÀ1. Product peaks were
characterized by ESI-MS. Experimental details for the synthesis of 8, 9, 11,
and 12 are found in the Supporting Information.
[22] E. Kaiser, R. L. Colescott, C. D. Bossinger, P. I. Cook, Anal. Biochem.
1970, 34, 595 ± 598.
[23] Monitoring of single beads under a microscope.
[24] The stability of a glycosidic bond is enhanced upon acylation of the
carbohydrate: H. Kunz, C. Unverzagt, Angew. Chem. 1988, 100,
1763 ± 1765; Angew. Chem. Int. Ed. Engl. 1988, 27, 1697.
[25] Abbreviations used: Aloc allyloxycarbonyl, Bal b-alanine, Boc
tert-butoxycarbonyl, Dde 1-44,4-dimethyl-2,6-dioxocyclohexylide-
ne)ethyl), Ddv 1-44,4-dimethyl-2,6-dioxocyclohexylidene)isovaler-
yl, DIEA ethyldiisopropylamine, ESI-MS electrospray ionization
mass spectrometry, Fmoc 9-fluorenylmethoxycarbonyl, HBTU O-
Received: May 16, 2000
Revised: August 4, 2000 [Z15129]
benzotriazol-1-yl-N,N,N',N'-tetramethyluronium
hexafluorophos-
phate, HOBt 1-hydroxybenzotriazole, Mtt 44-methylphenyl)di-
phenylmethyl, NMP 1-methyl-2-pyrrolidone, MeOTf methyl tri-
fluoromethanesulfonate, Pfp pentafluorophenyl, RP-HPLC re-
versed-phase HPLC, TBDPS tert-butyldiphenylsilyl, TFA tri-
fluoroacetic acid, Troc trichloroethoxycarbonyl.
[1] Essentials of Glycobiology 4Eds.: A. Varki, R. Cummings, J. Esko, H.
Freeze, G. Hart, J. Marth), Cold Spring Harbor Lab. Press, Cold
Spring Harbor, 1999.
[2] a) Y. C. Lee, R. T. Lee, J. Biomed. Sci. 1996, 3, 221 ± 237; b) J. M.
Gardiner, Expert Opin. Invest. Drugs 1998, 7, 405 ± 411; c) C. A.
Lingwood, Curr. Opin. Chem. Biol. 1998, 2, 695 ± 700.
[3] a) H.-J. Gabius, Eur. J. Biochem. 1997, 243, 543 ± 576; b) H. Lis, N.
Sharon, Chem. Rev. 1998, 98, 637± 674.
[4] J. M. Rini, Annu. Rev. Biophys. Biomol. Struct. 1995, 24, 551 ± 577.
[5] M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. 1998, 110,
2908 ± 2953; Angew. Chem. Int. Ed. 1998, 37, 2754 ± 2794.
[6] a) R. Roy, Curr. Opin. Struct. Biol. 1996, 6, 692 ± 702; b) L. L.
Kiessling, N. L. Pohl, Chem. Biol. 1996, 3, 7 1 ± 7 7 ; cN)eoglycoconju-
gates. Preparation and Applications 4Eds.: Y. C. Lee, R. T. Lee),
Academic Press, San Diego, 1994.
[7] a) G. B. Sigal, M. Mammen, G. Dahmann, G. M. Whitesides, J. Am.
Chem. Soc. 1996, 118, 3789 ± 3800; b) R. Roy, Trends Glycosci.
Glycotechnol. 1996, 8, 79 ± 99; c) M. Kanai, K. H. Mortell, L. L.
Kiessling, J. Am. Chem. Soc. 1997, 119, 9931 ± 9932.
[8] a) P. I. Kitov, J. M. Sadowska, G. Mulvery, G. D. Armstrong, H. Ling,
N. S. Pannu, R. J. Read, D. R. Bundle, Nature 2000, 403, 669 ± 672;
b) E. Fan, Z. Zhang, W. E. Minke, Z. Hou, C. L. M. J. Verlinde,
W. G. J. Hol, J. Am. Chem. Soc. 2000, 122, 2663 ± 2664.
Wound-Activated Chemical Defense in
Unicellular Planktonic Algae**
Georg Pohnert*
Diatoms are highly successful unicellular algae occurring in
ocean and fresh water phytoplankton, as well as in biofilms on
solid substrates. They are exceedingly abundant and are
among the most important primary sources sustaining the
marine food chain. Despite this, little is known about the
chemical defense of these micro algae. Two of the few
reported examples are the aldehydes decadienal 5 and
decatrienal 6 4see Scheme 1) from the diatom Thalassiosira
rotula, which reduce the hatching success from eggs of
copepods 4zooplankton grazers).[1] This observed activity
explains the paradox that herbivorous copepods are less
successful feeding on diatoms, although these algae are
considered as high-quality food.
Here I provide biosynthetic and kinetic data on the
formation of fatty acid derived metabolites in planktonic
diatoms, demonstrating that the release of a,b,g,d-unsaturat-
ed dienals is widespread among this class of algae. The
enzymatic mechanism to produce these metabolites is effi-
ciently activated seconds after cell disruption and leads to
high local concentrations of the defensive metabolites 5 and 6
or of structurally related potentially active aldehydes like 9.
The simultaneous production of C11 hydrocarbons and
9-oxonona-5Z,7E-dienoic acid from C20 fatty acids was
demonstrated with the benthic diatom Gomphonema parv-
ulum.[2, 3] The polar dienoic acid contains the same aldehydic
Ï Â
[9] K. S. Lam, M. Lebl, V. Krchnak, Chem. Rev. 1997, 97, 411 ± 448.
[10] On the use of cyclic peptides as scaffolds see: a) U. Sprengard, M.
Schudok, W. Schmidt, G. Kretzschmar, H. Kunz, Angew. Chem. 1996,
108, 359 ± 362; Angew. Chem. Int. Ed. Engl. 1996, 35, 321 ± 324; b) H.
Franzyk, M. K. Christensen, R. M. Jùrgensen, M. Meldal, H. Cordes,
S. Mouritsen, K. Bock, Bioorg. Med. Chem. 1997, 5, 21 ± 40; c) G.
Tuchscherer, M. Mutter, Pure Appl. Chem. 1996, 68, 2153 ± 2162; d) J.
Eichler, A. W. Lucka, R. A. Houghten, Peptide Res. 1994, 7, 300 ± 307.
[11] R. Haubner, D. Finsinger, H. Kessler, Angew. Chem. 1997, 109, 1440 ±
1456; Angew. Chem. Int. Ed. Engl. 1997, 36, 1374 ± 1389, and
references therein.
[12] S. R. Chhabra, B. Hothi, D. J. Evans, P. D. White, B. W. Bycroft, W. C.
Chan, Tetrahedron Lett. 1998, 39, 1603 ± 1606.
[13] H. Kunz, C. Unverzagt, Angew. Chem. 1984, 96, 426 ± 427; Angew.
Chem. Int. Ed. Engl. 1984, 23, 436 ± 437.
[14] A. Schleyer, M. Meldal, M. Renil, H. Paulsen, K. Bock, Angew. Chem.
1997, 109, 2064 ± 2067; Angew. Chem. Int. Ed. Engl. 1997, 36, 1976 ±
1978.
[15] a) U. Ellervik, G. Magnusson, Carbohydr. Res. 1996, 280, 251 ± 260;
b) M. Schultz, H. Kunz, Tetrahedron: Asymmetry 1993, 4, 1205 ± 1220.
[16] P. Sieber, Tetrahedron Lett. 1987, 28, 2107± 2110.
[17] D. A. Wellings, E. Atherton, Methods Enzymol. 1997, 289, 44 ± 67.
[18] B. W. Bycroft, W. C. Chan, S. R. Chhabra, N. D. Hone, J. Chem. Soc.
Chem. Commun. 1993, 778 ± 779.
[19] S. C. Story, J. V. Aldrich, Int. J. Pept. Protein Res. 1994, 43, 292 ± 296.
[20] Using this cyclization method the Rink amide linker was applied for
attachment to the solid support and the e-NH2-group of the lysine
residue involved in cyclization was protected with the Mtt group and
liberated after formation of the Pfp ester: D. Tumelty, M. C. Needels,
V. V. Antonenko, P. R. Bovy in Peptides: Chemistry, Structure, and
Biology 4Eds.: P. T. P. Kaumaya, R. S. Hodges), Mayflower Scientific,
Kingswinford, 1996, pp. 121 ± 122.
[*] Dr. G. Pohnert
Max-Planck-Institut für Chemische Ökologie
Carl-Zeiss-Promenade 10, 07745 Jena 4Germany)
Fax : 449)3641-643665
[**] I gratefully acknowledge the gift of T. rotula by Prof. S. Poulet
[21] By using
a 2% solution of hydrazine hydrate, even after five
4Roscoff, France).
stimulating discussion during the preparation of the manuscript. I
thank J. Rechtenbach for technical assistance.
I am indebted to Prof. Dr. W. Boland for
treatments significant amounts of the cleavage product 3-iso-butyl-
6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indazole could be detected
by UV spectroscopy 4A290).
4352
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3923-4352 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 23