6
Table 2 Suzuki coupling reactions of h -(fluorobenzene)tricarbonylchro-
Notes and references
mium(0)
1 A. Suzuki, in Metal-catalyzed Cross-coupling Reactions, ed. F.
Diederich and P. J. Stang, Wiley-VCH, Weinheim, 1998, p. 49.
2 K.-i. Gouda, E. Hagiwara, Y. Hatanaka and T. Hiyama, J. Org. Chem.,
1996, 61, 7232.
3 W. J. Scott, J. Chem. Soc., Chem. Commun., 1987, 1755.
4 A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 1998, 37, 3387.
5 D. W. Old, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc., 1998,
120, 9722.
Run
R1
Yields (%)
6 F. Firooznia, C. Gude, K. Chan and Y. Satoh, Tetrahedron Lett., 1998,
39, 3985.
7 C. Zhang, J. Huang, M. L. Trudell and S. P. Nolan, J. Org. Chem., 1999,
64, 3804.
8 A. F. Little and G. C. Fu, Angew. Chem., Int. Ed., 1999, 38, 2413.
10 J. P. Gilday and D. A. Widdowson, J. Chem. Soc., Chem. Commun.,
1986, 1235.
1
2
3
4
5
6
H
61
87
78
81
79
0a
4-MeO
2-MeO
4-Me
2-Me
4-Br
11 J. P. Gilday and D. A. Widdowson, Tetrahedron Lett., 1986, 27,
5525.
12 E.-I. Negishi and F. Liu, in Metal-catalyzed Cross-coupling Reactions,
ed. F. Diederich and P. J. Stang, Wiley-VCH, Weinheim, 1998, p. 1.
13 K. Kirschke, J. Deutsch and H. J. Niclas, Phosphorus Sulfur Silicon
Relat. Elem., 1996, 117, 293.
14 F. Rose-Munch, E. Rose, A. Semra, L. Mignon, J. Garcia-Oricain and C.
Knobler, J. Organomet. Chem., 1989, 363, 297.
15 M. F. Semmelhack, G. Hilt and J. H. Colley, Tetrahedron Lett., 1998,
39, 7683.
16 V. V. Litvak, P. P. Kun and V. D. Shteingarts, Zh. Org. Khim., 1984, 20,
753.
17 F. E. Goodson, T. I. Wallow and B. M. Novak, J. Am. Chem. Soc., 1997,
119, 12441.
18 M. Sakamoto, I. Shimizu and A. Yamamoto, Chem. Lett., 1995,
1101.
19 H. Yang, H. Gao and R. J. Angelici, Organometallics, 1999, 18,
2285.
a
An intractable oligomeric/polymeric material containing no chro-
mium(0) was produced.
With suitable conditions established, the fluorobenzenechro-
mium complex was coupled with a series of electron-rich
arylboronic acids (Table 2).21 Both moderately hindered (runs
3, 5) and unhindered boronic acids (runs 1, 2, 4) gave good
yields. The polymerisation of 4-bromophenylboronic acid
under the reaction conditions can be attributed to the greater
reactivity of the C–Br bond over the C–F bond.
To further investigate the scope of this process, the more
electron-rich
4-methoxyfluorobenzenetricarbonylchromium
complex was studied.21 The yields (Table 3), with both the
moderately hindered and the unhindered boronic acids, were
comparable to those of the parent complex despite the expected
reduction in reactivity of the alkoxy analogue.
20 M. F. Semmelhack, G. R. Clark, J. L. Garcia, J. J. Harrison, Y.
Thebtaranonth, W. Wulff and A. Yamashita, Tetrahedron, 1981, 37,
3957.
6
6
Table 3 Suzuki coupling reactions of h -(4-fluoromethoxybenzene)-
tricarbonylchromium(0)
21 Typical procedure: A solution of h -(fluorobenzene)tricarbonylchro-
mium(0) (0.300 g, 1.29 mmol), 4-methoxyphenylboronic acid (0.392 g,
2.58 mmol), caesium carbonate (0.925 g, 2.84 mmol), Pd2(dba)3 (5
mol%, 0.060 g, 0.06 mmol) and PMe3 (20 mol%, 0.26 ml, 1 M solution
in toluene) in deoxygenated DME (9 ml) was stirred under reflux for 16
h. Et2O (50 ml) was added and the solution was washed with 10% aq.
NaOH (15 ml), water (15 ml) and brine (15 ml) and dried over MgSO4.
Concentration in vacuo followed by column chromatography (eluent:
6
5% Et2O–hexane) gave h -(4A-methoxybiphenyl)tricarbonylchro-
Run
R1
Yield (%)
mium(0) as a yellow crystalline solid (0.360 g, 87%), mp 58–61 °C
(Found: C, 59.99; H, 3.69. C16H12CrO4 requires C, 60.01; H, 3.78%);
nmax(KBr)/cm21 2986w, 2838w, 1977s, 1961s, 1887s, 1868s, 1609m,
1508m, 1454m, 1279m, 1249m, 1176m, 1020m, 840m, 819m, 661m,
629s, 535m; dH(270 MHz; CDCl3) 7.43 (2H, d, J 8.9), 6.93 (2H, d, J
8.9), 5.64 (2H, dd, J 6.7, 1.0), 5.49 (2H, t, J 6.4), 5.28 (1H, tt, J 6.2, 1.0),
3.83 (3H, s); dC(68 MHz) 233.0, 160.4, 128.6, 128.3, 114.3, 111.2, 93.2,
91.6, 90.9, 55.4; m/z (EI) 320 (M+, 43%), 264 (39), 236 (93), 221 (11),
205 (5), 184 (9), 169 (4), 52 (100) (Observed: M+ 320.0141;
C16H12CrO4 requires 320.0130).
1
2
3
H
2-Me
4-Me
76
77
74
These results clearly raise intriguing mechanistic questions,
which we continue to address. The couplings demonstrate the
versatility of the arenetricarbonylchromium(0) complexes and
add further possibilities to the exploitation of their already
widely established role in synthesis.
Communication 9/06256D
2212
Chem. Commun., 1999, 2211–2212