Table 2 SmI2-induced coupling of benzylated glycopyranosyl iodides with
cyclohexanone
The utility of this new procedure has been demonstrated in a
fast synthesis of the carbon-linked mimic of the -glucopyr-
anosyl(b1?6)- -mannopyranoside dimer 17 (Scheme 2). Re-
D
D
ductive samariation of iodide 14 in the presence of aldehyde
1510† provided the b-C-dimer 16 in 66% yield. Only one isomer
was detected at the exocyclic asymmetric center. Methyl
xanthate formation and radical reduction furnished the methyl-
ene-linked dimer which was debenzylated and characterized as
its per-O-acetyl derivative 17.‡
In summary, we have shown that the silylated or benzylated
glycopyranosyl iodides are useful C-glycosyl donors for the
synthesis of 1,2-trans C-glycosyl compounds. Work is in
progress to delineate a precise mechanism for the transforma-
tion.§
Notes and references
† Aldehyde 15 was prepared from methyl 2,3,4,6 tetra-O-benzyl-a-D-
mannopyranoside in an overall yield of 54% by the following five-step
sequence of reactions: i, Ac2O, CF3COOH, (4+1), 25 °C, 1 h; ii, MeONa,
MeOH, 25 °C, 12 h; iii, 1.4 equiv. PPh3, 4 equiv. I2, imidazole, toluene, 70
°C, 1 h; iv, 1.4 equiv. Bu4NCN, DMF, 0 to 25 °C, 3 h; v, 3 equiv. DIBAL-H,
CH2Cl2,, 278 °C, 0.5 h.
‡ Selected data for 17: [a]2D0 = + 22 (c = 0.2, CHCl3); 1H NMR (CDCl3,
400 MHz, atom numbering of a tridecopyranoside) d = 5.29 (dd, 1H, J 9.8,
3.5, H-3), 5.26 (dd, 1H, J 3.5, 1.5, H-2), 5.18, 5.10, 5.04, 4.89 (4 t, 4H, J 9.5,
H-4,9,10,11), 4.65 (d, 1H, J 1.5, H-1), 4.25 (d, 1H, J 12, 5.2, H-13), 4.10
(dd, 1H, J 12, 2.1, H-13A), 3.70 (ddd, 1H, J 10, 9.5, 2, H-12), 3.64 (ddd, 1H,
J 10, 5, 2, H-5), 3.40 (ddd, 1H, H-8), 3.36 (s, 3H, OMe), 2.16, 2.11, 2.08,
2.06, 2.04, 2.02 and 2.00 (7 s, 21H, OAc), 1.9–1.8 and 1.5–1.4 (2 m, 4H, H-
6,6A,7,7A); MS (ES): m/z
= 671 [M + Na]; HR-MS (ES), calcd for
C28H40NaO17 [M + Na]: 671.2163, found: 671.2166.
§ We do not yet have a reasonable explanation for the significant differences
between the behavior of anomeric iodides and anomeric 2-pyridyl sulfones.
It is possible that there is a change in the electron transfer mechanism (inner
vs. outer sphere ET) on going from anomeric 2-pyridyl sulfones to anomeric
iodides inducing a change in the product distribution (C–C bond formation
vs. elimination).
1 M. H. D. Postema, C-Glycoside Synthesis, CRC Press, Boca Raton, FL,
1995; D. E. Levy and C. Tang, The Chemistry of C-Glycosides,
Pergamon, Oxford, 1995; G. Casiraghi, F. Zanardi, G. Rassu and P.
Spanu, Chem. Rev., 1995, 95, 1677; J.-M. Beau and T. Gallagher, Topics
Curr. Chem., 1997, 187, 1; Y. Du, R. J. Linhardt and I. R. Vlahov,
Tetrahedron, 1998, 54, 9913; T. Skrydstrup, B. Vauzeilles and J.-M.
Beau, in Oligosaccharides in Chemistry and Biology—A Compre-
hensive Handbook, Vol. 1, ed. B. Ernst, P. Sinaÿ and G. Hart, Wiley-
VCH, Weinheim, 2000, pp. 495–530.
2 D. Mazéas, T. Skrydstrup and J.-M. Beau, Angew. Chem., Int. Ed. Engl.,
1995, 34, 909; T. Skrydstrup, O. Jarreton, D. Mazéas, D. Urban and
J.-M. Beau, Chem. Eur. J., 1998, 4, 655.
3 O. Jarreton, T. Skrydstrup and J.-M. Beau, Chem. Commun., 1996,
1661; O. Jarreton, T. Skrydstrup and J.-M. Beau, Tetrahedron Lett.,
1997, 38, 303; O. Jarreton, T. Skrydstrup and J.-M. Beau, Chem. Eur. J.,
1999, 5, 430; S. L. Krintel, J. Jiménez-Barbero and T. Skrydstrup,
Tetrahedron Lett., 1999, 40, 7565.
4 B. Helferich and R. Gootz, Chem. Ber., 1929, 62, 2788.
5 M. J. Hadd and J. Gervay, Carbohydr. Res., 1999, 320, 61 and
references cited therein.
6 J. Thiem and B. Meyer, Chem. Ber., 1980, 113, 3075.
7 B. Ernst and T. Winkler, Tetrahedron Lett., 1989, 30, 3081; R. Caputo,
H. Kunz, D. Mastroianni, G. Palumbo, S. Pedatella and F. Solla, Eur. J.
Org. Chem., 1999, 3147.
8 T. Uchiyama and O. Hindsgaul, Synlett, 1996, 499; T. Uchiyama and O.
Hindsgaul, J. Carbohydr. Chem., 1998, 17, 1181
Scheme 2 Reagents and conditions: i, 1.1 equiv. of TMSI, CH2Cl2, 25 °C,
0.5 h; ii, 1.1 equiv. of 15, 2.2 equiv. of SmI2, THF, 25 °C, 0.25 h, 66% from
7; iii, 1.5 equiv. of NaH, CS2, CH3I, 25 °C, 3 h, 96%; iv, 1.5 equiv. of
Bu3SnH, cat. AIBN, toluene, 95 °C, 2.5 h, 89%; v, H2, Pd/C, MeOH, Ac2O,
py, 94%.
9 F. Machrouhi, B. Hamann, J.-L. Namy and H. B. Kagan, Synlett, 1996,
633 and references cited therein; P. Girard, J.-L. Namy and H. B. Kagan,
J. Am. Chem. Soc., 1980, 102, 2693.
10 For another synthesis of aldehyde 15 see: H. B. Boren, K. Eklind, P. J.
Garegg, B. Lindberg and A. Pilotti, Acta Chem. Scand., 1972, 26,
4143.
useful level (72 vs. 39% yield in the gluco series) with a
concomitant decrease in the elimination reaction. We also
noticed a further improvement by incorporating catalytic
amounts of NiI2 with SmI2,9 and conducting the coupling
reaction at 210 °C (80% of 11, entry 4).
2348
Chem. Commun., 2000, 2347–2348