J. Am. Chem. Soc. 2000, 122, 12435-12440
12435
Alkyne Metathesis with Simple Catalyst Systems: Efficient Synthesis
of Conjugated Polymers Containing Vinyl Groups in Main or Side
Chain
Glen Brizius, Neil Gregory Pschirer, Winfried Steffen, Katherine Stitzer,
Hans-Conrad zur Loye, and Uwe H. F. Bunz*
Contribution from the Department of Chemistry and Biochemistry, The UniVersity of South Carolina,
Columbia, South Carolina 29208
ReceiVed March 22, 2000
Abstract: The synthesis of novel conjugated polymers by acyclic diyne metathesis (ADIMET) is reported.
These polymers are hybrids between poly(p-phenylenevinylene) and poly(p-phenyleneneethynylene) (PPE).
They contain phenylene, ethynylene, and vinylene groups (stsPhsdsPhs, PPVE). Simple in situ catalysts
formed from Mo(CO)6 and 4-chlorophenol were used to metathesize the dipropynyl(tetraalkyl)stilbene
monomers. The monomers are made by a combination of Horner reactions and Heck-type couplings. The
PPVEs form in high yields and are structurally defined. They show degrees of polymerization (Pn) of 30-220
repeating units (i.e. 60-450 benzene rings), demonstrating that the presence of the double bonds does not
interfere with alkyne metathesis. The PPVEs were structurally characterized by XRD and electron microscopy.
They show fibrillar and network-type morphologies, which should make them interesting for applications in
molecular electronics. Solid samples of PPVEs display powder XRD patterns almost identical to those of the
PPEs. PPVEs thus assume similar doubly lamellar structures as the PPEs. The aggregation behavior of PPVEs
was studied. In addition, ADIMET to a poly(2,7-fluorenyleneethynylene) carrying unsaturated side chains is
reported. In this case the presence of unsaturation does neither interfer with efficient alkyne metathesis.
Introduction
heterocyclic polymers have certainly played an important role
in these applications8-10 the hugely popular poly(p-phen-
ylenevinylene)s (PPV, 1) and the polyfluorenes dominate the
field of LEDs2 and similar applications, while the poly(p-phen-
yleneethynylene)s (PPE, 2) are increasingly important in diverse
sensing applications.6,7 However, the hybrid of these two
structure types, i.e., PPV and PPE, 3, which could be termed
PPVE, has, surprisingly, never been reported.
We have successfully exploited alkyne metathesis11 with
simple catalyst systems for the preparation of high-molecular-
weight dialkyl-PPEs 212 and polynaphthyleneethynylene-PPE
copolymers13 and in the ring-closing metathesis1 of dipro-
Herein is described the following: (a) “Instant” catalysts
formed from Mo(CO)6 and 4-chlorophenol in off-the-shelf 1,2-
dichlorobenzene perform clean alkyne metathesis of propyny-
lated substrates in the presence of double bonds.1 (b) The
catalysts allow the synthesis of alkyl-substituted poly(p-phe-
nyleneethynylene)/poly(p-phenylenevinylene) hybrids (PPVE,
3) and the preparation of poly(2,7-fluorenyleneethynylene)s (29)
decorated with unsaturated citronellyl side chains. (c) The solid-
state structure, aggregation, and supramolecular ordering of the
PPVEs 3 was determined by powder XRD, electron microscopy,
and UV-vis spectroscopy.
Conjugated polymers are organic semiconductors and as such
are important as active layers in light emitting diodes (LED),2
“plastic” lasers,3 light emitting electrochemical cells,4 thin film
transistors,5 and the growing area of chemical sensing.6,7 While
(6) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. ReV. 2000,
100, 2537. Swager, T. M. Acc. Chem. Res. 1998, 31, 201. Yang, J.-S.;
Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864.
(7) Tour, J. M. Chem. ReV. 1996, 96, 537.
(8) Zhang, C. Y.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 8783. Zhang,
X. J.; Shetty, A. S.; Jenekhe, S. A. Macromolecules 1999, 32, 7422. Zhang,
X. J.; Shetty, A. S.; Jenekhe, S. A. Acta Polym. 1998, 49, 52. Chen, X. L.;
Jenekhe, S. A. Macromolecules 1997, 30, 1728.
(1) (a) Independently of us, Fu¨rstner has recently reported the tolerance
of double bonds in the metathesis of alkynes: Fu¨rstner, A.; Guth, O.;
Rumbo, A.; Seidel G. J. Am. Chem. Soc. 1999, 121, 11108. (b) For related
work of this group see: Fu¨rstner, A.; Seidel, G. Angew. Chem. 1998, 37,
1734. Fu¨rstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 1999,
121, 9453. (c) For high yield ring closing alkyne metathesis of 2,n-diyne
hydrocarbons see: Weiss, K. Universita¨t Bayreuth, unpublished results.
(2) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. 1998, 37,
402.
(3) (a) Scherf, U. J. Mater. Chem. 1999, 9, 1853. (b) Hide, F.; Diaz-
Garcia, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30,
430.
(4) Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
(5) Gonzalez-Ronda, L.; Martin, D. C.; Nanos, J. I.; Politis, J. K.; Curtis,
M. D. Macromolecules 1999, 32, 4558. Nanos, J. I.; Kampf, J. W.; Curtis,
M. D.; Gonzalez, L.; Martin, D. C. Chem. Mater. 1995, 7, 2232. Curtis,
M. D.; Cheng, H.; Nanos, J. I.; Nazri, G.-A. Macromolecules 1998, 31,
205.
(9) (a) Patil, A. O.; Heeger, A. J.; Wudl, F. Chem. ReV. 1988, 88, 183.
(b) Rughooputh, S. D. D. V.; Hotta, S.; Heeger, A. J.; Wudl, F. J. Polym.
Sci., B 1987, 25, 1071. (c) For an excellent overview about polythiophenes
see: Reddinger, J. L.; Reynolds, J. R. AdV. Polym. Sci. 1999, 145, 58.
(10) (a) Lucht, B. L.; Mao, S. S. H.; Tilley, T. D. J. Am. Chem. Soc.
1998, 120, 4354. (b) Mao, S. S. H.; Liu, F. Q.; Tilley, T. D. J. Am. Chem.
Soc. 1998, 120, 1193. (c) Buretea, M. A.; Tilley, T. D. Organometallics
1997, 16, 1507. (d) Nguyen, P.; Gomez-Elipe, P.; Manners, I, Chem. ReV.
1999, 99, 1515 and references cited therein.
(11) Weiss, K.; Michel, A.; Auth, E. M.; Bunz, U. H. F.; Mangel, T.;
Mu¨llen, K. Angew. Chem. 1997, 36, 506. Bunz, U. H. F.; Kloppenburg, L.
Angew. Chem. 1999, 38, 478.
(12) Kloppenburg, L.; Song, D.; Bunz, U. H. F. J. Am. Chem. Soc. 1998,
120, 7973.
(13) Pschirer, N. G.; Vaughn, M. E.; Dong, Y. B.; zur Loye, H. C.; Bunz,
U. H. F. J. Chem. Soc., Chem. Commun. 2000, 85.
10.1021/ja0010251 CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/02/2000