directing group is located further away from the double
bond.7 The observed stereoselectivity is significantly lower
than for allylic substituents due to less efficient alignment
of the substrate by the directing entity for a selective π-face
attack. Nonetheless, recently we discovered the directing
propensity of the remote urea NH functionality of chiral
oxazolidines in the singlet-oxygen ene reaction.8 As the
factors controlling singlet-oxygen reactions are often also
valid for DMD and m-CPBA epoxidations, these substrates
appeared to be promising for remote-functionality controlled
diastereoselective epoxidations. Herein we report that chiral
oxazolidine-substituted olefins undergo highly diastereo-
selective (up to >98:2) epoxidation with DMD and m-CPBA.
The diastereoselectivity is induced by a remote urea NH
group.
The synthesis of oxazolidine-substituted olefins 1a-c was
described previously,8 and derivative 1d was prepared by
condensation of tiglic aldehyde and S-phenylglycinol, fol-
lowed by acylation with phenylisocyanate (cf. the Supporting
Information). The substrates 1 were epoxidized with di-
methyldioxirane in acetone and m-chloroperbenzoic acid in
chloroform to yield the corresponding epoxides 2 (Table 1).
the epoxide lk-2a to the known allylic alcohol lk-3a,8,9 which
establishes the like configuration. Furthermore, the lk-2a
epoxide was converted to its lk-2c derivative through
methylation, which allowed us to assign the relative con-
figuration of the lk- and ul-2c epoxides (Scheme 1). The ul-
Scheme 1a
a Key: (i) NaH, MeI, DMSO, 20 °C, 15 h; (ii) activated Al2O3,
n-hexane, 20 °C, 16 h.
2d epoxide was synthesized independently from the optically
active aldehyde 2R,3S-310 (Scheme 2).
Scheme 2a
Table 1. Diastereoselective Epoxidation of
Oxazolidine-Substituted Olefins 1 by DMD and m-CPBA
a Key: (i) (1) K2CO3, CDCl3, 20 °C, 2 h; (2) PhNCO, CDCl3,
20 °C, 3 h.
convn
R1 R2 R3 oxidantb (%)a lk-2:ul-2
dra
entry
Ar
1a C6H5
1b p-NO2-C6H4
1c C6H5
1d C6H5
1a C6H5
1b p-NO2-C6H4
1c C6H5
1d C6H5
The exclusive like diastereoselectivity in the DMD ep-
oxidation of the 1a,b derivatives (entries 1 and 2) may be
explained in terms of the highly effective hydrogen bonding
1
2
3
4
5
6
7
8
H
H
Me
Me
H
H
DMD
DMD
>95 >98:2c
>95 >98:2c
H
Me
H
H
H
Me Me DMD
94
78
94
26:74
74:26
81:19
87:13
40:60
74:26
H
Me
Me
H
H
H
DMD
m-CPBA
m-CPBA >95
52
m-CPBA >95
(5) (a) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958-
1965. (b) Chamberlain, P.; Roberts, M. L.; Whitham, G. H. J. Chem. Soc.
B 1970, 1374-1381. (c) Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe,
T.; Curci, R. J. Org. Chem. 1992, 57, 2182-2184. (d) Asensio, G.; Mello,
R.; Boix-Bernardini, C.; Gonza´lez-Nu´n˜ez, M. E.; Castellano, G. J. Org.
Chem. 1995, 60, 3692-3699. (e) Singleton, D. A.; Merrigan, S. R.; Liu,
J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385-3386.
(6) (a) Bach, R. D.; Owensby, A. L.; Gonzales, C.; Schlegel, H. B. J.
Am. Chem. Soc. 1991, 113, 2338-2339. (b) Bach, R. D.; Este´vez, C. M.;
Winter, J. E.; Glukhovtsev, M. N. J. Am. Chem. Soc. 1998, 120, 680-685.
(c) Freccero, M.; Gandolfi, R.; Sarzi-Amade`, M.; Rastelli, A. J. Org. Chem.
1999, 64, 3858-3860. (d) Freccero, M.; Gandolfi, R.; Sarzi-Amade`, M.;
Rastelli, A. J. Org. Chem. 2000, 65, 2030-2042. (e) Adam, W.; Bach, R.
D.; Dmitrenko, O.; Saha-Mo¨ller, C. R. J. Org. Chem. 2000, 65, 6715-
6728.
(7) (a) Kobayashi, Y.; Uchiyama, H.; Kanbara, H.; Sato, F. J. Am. Chem.
Soc. 1985, 107, 5541-5543. (b) Murray, R. W.; Singh, M.; Williams, B.
L.; Moncrieff, H. M. J. Org. Chem. 1996, 61, 1830-1841. (c) Adam, W.;
Bru¨nker, H.-G.; Kumar, A. S.; Peters, E.-M.; Peters, K.; Schneider, U.;
von Schnering, H. G. J. Am. Chem. Soc. 1996, 118, 1899-1905.
(8) Adam, W.; Peters, K.; Peters, E.-M.; Schambony, S. B. J. Am. Chem.
Soc. 2000, 122, 7610-7611.
Me Me m-CPBAd
Me
H
H
a Determined by 1H NMR spectroscopy, error (5% of the stated values;
the mass balance was >90% in all cases. b DMD: acetone, 20 °C, 5 h;
m-CPBA: CDCl3, 20 °C, 2 h. c Not even traces of the corresponding unlike
epoxides were detected. d CH2Cl2/aqueous NaHCO3 buffer, 20 °C, 4 h (see
text).
The epoxidation of 1c with peracid was done in a buffered
two-phase system to avoid acid-catalyzed decomposition of
the product that was observed under standard reaction
conditions. For the substrates 1a,b (entries 1 and 2), the like
product is formed exclusively with DMD (not even traces
of the unlike diastereomer could be detected), but for the
derivative 1d (entry 4) a significantly lower like selectivity
is observed; in contrast, with the N-methylated urea 1c (entry
3) even the unlike epoxide is preferred. The stereochemical
assignment was made by base-catalyzed rearrangement of
(9) (a) Joshi, V. S.; Damodaran, N. P.; Dev, S. Tetrahedron 1968, 24,
5817-5830. (b) Va´zquez, J. T.; Chang, M.; Nakanishi, K. J. Org. Chem.
1988, 53, 4797-4800.
(10) (a) Mart´ın, T.; Rodr´ıguez, C. M.; Mart´ın, V. S. Tetrahedron:
Asymmetry 1995, 6, 1151-1164. (b) Tanaka, M.; Tomioka, K.; Koga, K.
Tetrahedron 1994, 50, 12843-12852.
80
Org. Lett., Vol. 3, No. 1, 2001