3 G. Markovich, C. P. Collier, S. E. Henrichs, F. Remarcle, R. D. Levine
and J. R. Heath, Acc. Chem. Res., 1999, 32, 415.
4 J. P. Wilcoxon, J. Phys. Chem. B, 2000, 104, 7334.
5 S.-H. Kim, G. Markovich, S. Rezvani, S. H. Choi, K. L. Wang and J. R.
Heath, Appl. Phys. Lett., 1999, 74, 317.
240 °C (Fig. 2B). These results suggest that smaller nano-
crystals are produced at higher growth temperatures where more
nucleation sites exist and relatively less available ZnTe material
is present for each nucleus during the growth process.
6 See reviews: A. P. Alivisatos, J. Phys. Chem., 1996, 100, 13226; A.
Hagfeldt and M. Gratzel, Chem. Rev., 1995, 95, 49; H. Weller, Angew.
Chem., Int. Ed. Engl., 1993, 32, 41; J. R. Heath, Science, 1995, 270,
1315.
7 T. Trindade and P. O’Brein, Chem. Mater., 1997, 9, 523.
8 X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc., 1998, 120,
5343.
9 C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993,
115, 8706.
10 M. Mullenborn, R. F. Jarvis, B. G. Yacobi, R. B. Kaner, C. C. Colemann
and N. M. Haegel, Appl. Phys. A, 1993, 56, 317.
11 T. Rajh, O. I. Micic and A. J. Nozik, J. Phys. Chem., 1993, 97,
11999.
12 J. Brennan, T. Siegrist, P. J. Carroll, S. M. Stuczynski, P. Reynders,
L. E. Brus and M. L. Steigerwald, Chem. Mater., 1990, 2, 403.
13 M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach and H.
Weller, J. Appl. Phys., 2000, 87, 2297.
14 A. L. Rogach, A. L. Kershaw, M. Burt, M. Harrison, A. Kornowski, A.
Eychmüller and H. Weller, Adv. Mater., 1999, 11, 552.
15 C. Bloomfield, Compd. Semicond., 1995, 1, 32.
16 Y. Li, Y. Ding and Z. Wang, Adv. Mater., 1999, 11, 847.
17 U. Resch, H. Weller and A. Henglein, Langmiur, 1989, 5, 1015.
18 M. Bochmann, Chem. Vap. Deposition, 1996, 2, 85; M. B. Hursthouse,
M. A. Malik, M. Motevalli and P. O’Brein, Polyhedron, 1992, 11, 45;
B. O. Dabbousi, P. J. Bonasia and J. Arnold, J. Am. Chem. Soc., 1991,
113, 3186; M. Bochmann, A. P. Colemann and A. K. Powell,
Polyhedron, 1992, 11, 507.
19 L. Lange and W. W. Du Mont, J. Organomet. Chem., 1985, 286, C1.
20 P. J. Bonasia and J. Arnold, J. Chem. Soc., Chem. Commun., 1990,
1299.
Fig. 2 Optical spectra of ZnTe nanocrystals grown at (a) 240 and (b) 180 °C;
(A) UV–VIS absorption spectra, (B) Photoluminescence spectra.
High resolution transmission electron micrographs
(HRTEM) show that the spherical ZnTe nanocrystals have
average sizes of 4.2 (±1.1) and 5.4 (±0.9) nm for samples grown
at 240 and 180 °C, respectively (Fig. 3A). Powder X-ray
diffractometry (XRD) and selected area diffractometry (SAED)
reveal patterns corresponding to (111), (220) and (311) of the
cubic phase of ZnTe nanocrystals (Fig. 3C, D). This result is
similar to that of TOPO-capped spherical ZnSe nanocrystals
described in a previous report.31 TEM of the rod-like ZnTe
nanocrystals show that the diameters of the rod-like nano-
crystals are quite uniform (ca. 25 nm) with lengths of several
hundred nanometers (200–700 nm) giving an aspect ratio from
8 to 30 (Fig. 3B). The rod-like ZnTe nanocrystals are also cubic
phase as confirmed by XRD and SAED analysis.
21 M. Bochmann and K. J. Webb, J. Chem. Soc., Dalton Tans., 1991,
2325.
22 M. Bochmann, G. C. Bwembya, A. K. Powell and X. Song, Polyhedron,
1995, 14, 3495.
23 P. Bonasia and J. Arnold, Inorg. Chem., 1992, 31, 2508.
24 This compound was prepared according to a modification of the
literature procedure: S. M. Stuczynski, J. G. Brennan and M. L.
Steigerwald, Inorg. Chem., 1989, 28, 4431.
25 TMEDA (2.56 g, 22.0 mmol) was slowly added to Zn(TePh)2 (6.97 g,
14.7 mmol) in toluene (100 ml) and the reaction mixture was stirred for
24 h. After pyridine (10 ml) and heptane (50 ml) were added, insolubles
were filtered off and the filtrate was concentrated and recrystallized at
224 °C to give colorless needle-shaped crystals. (6.02 g, 72.2%), mp
122–124 °C, Anal. Calc. for C18H26N2Te2Zn: C, 36.6; H, 4.40; N, 4.74;
Te, 43.2; Zn, 11.1. Found: C, 36.6; H, 4.50; N, 4.70; Zn, 11.0%.
dH(CDCl3, 25 °C): 7.78 (d, 4H), 7.04 (t, 2H), 6.89 (t, 4H), 2.62 (s, 4H),
2.48 (s, 12H).
26 Crystal data: C18H26N2Te2Zn, Mr = 590.98, monoclinic, space group
P21/n, a = 8.888(1), b = 17.866(3), c = 14.016(2) Å, b = 103.10(1)°,
U = 2167.8(5) Å3, Z = 4, Dc = 1.811 g cm23, F(000) = 1128, m(Mo-
Ka) = 3.772 mm, R1 = 0.0616, wR2 = 0.1659. CCDC 182/1854. See
in .cif form.
27 The Te–Zn–Te angles are slightly smaller than those reported for related
compounds with larger ligands such as [Zn(mesityl)2(py)2] and
[Zn{TeSi(SiMe3)3}2(py)2], (126.9 and 131.9°, respectively). The steric
repulsions between these bulkier ligands are responsible for the larger
angles as compared to compact phenyl ligands. This trend is clearly
shown by the gradual increase of angle from 118.29 to 126.9 to 131.9°
as the ligand size increases from phenyl to mesityl to sitel. The Zn–Te
and Zn–N bond lengths are 2.5822(65) and 2.136(5) Å which are almost
identical to those of [Zn{TeSi(SiMe3)3}2(py)2] and [Zn(mesityl)2(py)2]
and similar to those seen for other zinc complexes with organochalco-
gen and amine ligands.19–21
28 In TGA, we observed that the dissociation of TMEDA and the
generation of Ph2Te and ZnTe occur at 158 and 178 °C, respectively.
29 K. Osakada and T. Yamamoto, J. Chem. Soc., Chem. Commun., 1987,
1117.
30 M. P. Pileni, T. Gulik-Krzywicki, J. Tanori, A. Filankembo and J. C.
Dedieu, Langmuir, 1998, 14, 7359; Y. D. Li, H. W. Liao, Y. Ding, Y. T.
Qian, L. Yang and G. E. Zhou, Chem. Mater., 1998, 10, 2301; C. C.
Chen, C. Y. Chao and Z. H. Lang, Chem. Mater., 2000, 12, 1516.
31 Y. Jun, J. Koo and J. Cheon, Chem. Commun., 2000, 1243.
Fig. 3 (A) HRTEM analysis of spherical ZnTe nanocrystals grown at
240 °C, (B) TEM analysis of rod-like ZnTe nanocrystals, (C) powder X-ray
diffraction and (D) selected area diffraction patterns of 4.2 nm ZnTe
nanocrystals.
In conclusion, the results here constitute a simple and
convenient one-pot synthesis of morphology controlled ZnTe
nanocrystals using
a
monomeric molecular precursor,
[Zn(TePh)2][TMEDA]. By varying the growth temperature or
the choice of the templating surfactants, the size and shape of
the nanocrystals are controllable and quantum size effects are
observed. We believe that this strategy can be extended to the
facile synthesis of nanocrystals of other materials.
This work was supported by the Tera Level Nanodevices
National Program of KISTEP. We thank KBSI for the TEM
analyses and Professor S. J. Kim and Dr Y.-M. Kim of Ewha
Womans’ University for X-ray crystallographic analysis of the
sample.
Notes and references
1 N. Chestnoy, R. Hull and L. E. Brus, J. Chem. Phys., 1986, 85, 2237.
2 L. E. Brus, J. Chem. Phys., 1984, 80, 4403.
102
Chem. Commun., 2001, 101–102