V. P. Reddy et al. / Tetrahedron Letters 52 (2011) 777–780
779
reaction takes place only on the carbon atom with the iodo substi-
tuent in the presence of fluoro and chloro (Table 3, entries 10 and
11). Utilizing these conditions, various hetero aromatic iodides
catalyzed C–N cross-coupling reaction with aryl halides to produce
N-aryl pyrroles in moderate to good yields. The reaction outcome
provides a new strategy for constructing N-aryl pyrroles from
were reacted with trans-4-hydroxy-L-proline to give the corre-
trans-4-hydroxy-L-proline. The operational simplicity, inexpen-
sponding N-aryl pyrroles in encouraging yields (Table 3, entries
19 and 20).
siveness, and ready availability of the metal catalyst should render
this protocol attractive both from economic and industrial points
of view as compared to the previous methodologies.
In order to evaluate the scope of the process with respect to the
aryl halides, a variety of substituted aryl bromides and chlorides
were tested under optimized conditions. In all of the cases the
cross-coupling of aryl bromides with trans-4-hydroxy proline fur-
nished the corresponding N-aryl pyrroles derivatives in moderate
to good yields (Table 4).
Acknowledgments
V.P.R. thanks the CSIR, A.V.K. thanks the UGC, New Delhi, for the
award of fellowship.
However, the cross-coupling of various substituted aryl bro-
mides with trans-4-L-hydroxy proline required longer reaction
Supplementary data
times and higher temperatures to get reasonable yields of N-aryl
pyrrole, whereas shorter reaction times and lower temperatures
led to decreased yields (Table 4, entry 2). Poor yields were ob-
Supplementary data associated with this article can be found, in
served in the coupling of trans-4-hydroxy-L-proline with aryl chlo-
rides (Table 4, entry 1). Further more, C–N cross-coupling of
heterocyclic bromides, such as quinoline, benzodioxane, and thio-
phene produced N-aryl pyrroles in moderate yields (Table 4, en-
tries 8–10). Iodo benzene was found to be a more reactive
substrate than chloro and bromo benzenes.
References and notes
1. (a) Andersen, R. J.; Faulkner, D. J.; Cun-heng, H.; van Duyne, G. D.; Clardy, J. J.
Am. Chem. Soc. 1985, 107, 5492; (b) Jones, A. Pyrroles; Wiley: New York, 1990.
2. (a) Cozzi, P.; Mongelli, N. Curr. Pharm. Des. 1998, 4, 181; (b) Furstner, A.; Szillat,
H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305; (c) Bennett, J. W. Adv.
Appl. Microbiol. 2000, 47, 1; (d) Jacobi, P. A.; Coults, L. D.; Guo, J. S.; Leung, S. I. J.
Org. Chem. 2000, 65, 205; (e) Thompson, R. B. FASEB J. 2000, 15, 1671; (f)
Furstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582; (g) Walsh, C. T.; Tsodikova, S.
G.; Jones, A. R. H. Nat. Prod. Rep. 2006, 23, 517; (h) Liu, K.; Lu, H.; Hou, L.; Qi, Z.;
Teixeira, C.; Barbault, F.; Fan, B.-T.; Liu, S.; Jiang, S.; Xie, L. J. Med. Chem. 2008,
51, 7843; (i) Kovtunenko, V. O. CNS Active Drugs [in Ukrainian], Perun, Kiev,
1997.
In conclusion, we have developed for the first time trans-4-hy-
droxy-L-proline as an effective nucleophilic coupling partner in Cu
Table 4
N-Aryl pyrroles synthesis from various aryl halidesa
HO
3. Lee, C.-F.; Yang, L.-M.; Hwu, T.-Y.; Feng, A.-S.; Tseng, J.-C.; Luh, T.-Y. J. Am. Chem.
Soc. 2000, 122, 4992.
CuI, DMSO, Cs2CO3
O
X
Ar
N
Ar
40 h, 125 0
C
4. (a) Dieter, R. K.; Yu, H. Org. Lett. 2000, 2, 2283; (b) Iwasawa, N.; Maeyama, K.;
Saitou, M. J. Am. Chem. Soc. 1997, 119, 1486; (c) Furstner, A.; Weintritt, H.;
Hupperts, A. J. Org. Chem. 1995, 60, 6637; (d) Katritzky, A.; Jiang, J.; Steel, P. J. J.
Org. Chem. 1994, 59, 4551; (e) Hantzsch, A. Chem. Ber. 1890, 23, 1474; (f)
Broadbent, H. S.; Burnharm, W. S.; Olsen, R. K.; Sheely, R. M. J. Heterocycl. Chem.
1968, 5, 757; (g) Bayer, H. O.; Gotthardt, H.; Huisgen, R. Chem. Ber. 1970, 103,
2356; (h) Periasamy, M.; Srinivas, G.; Bharati, P. J. Org. Chem. 1999, 64, 4204.
5. (a) Ruault, P.; Pilard, J.-F.; Touaux, B.; Boullet, F. T.; Hamelin, J. Synlett 1994,
935; (b) Danks, T. N. Tetrahedron Lett. 1999, 40, 3957.
6. (a) Azizian, J.; Karimi, A. R.; Kazemizadeh, Z.; Mohammadi, A. A.;
Mohammadizadeh, A. R. J. Org. Chem. 2005, 70, 1471; (b) Banik, B. K.;
Cardona, M. Tetrahedron Lett. 2006, 47, 7385; (c) Sridhar, R.; Srinivas, B.;
Kumar, V. P.; Reddy, V. P.; Kumar, A. V.; Rao, K. R. Adv. Synth. Catal. 2008, 350,
1489.
N
H
OH
Entry
1
Aryl halide
Product
Yieldb (%)
15
N
Cl
Br
70
48c
N
2
25d
64
Br
N
3
4
5
MeO
MeO
Ph
Br
Br
N
61
60
7. (a) Rivera, S.; Bandyopadhyay, D.; Banik, B. K. Tetrahedron Lett. 2009, 50, 5445;
(b) Bandyopadhyay, D.; Mukherjee, S.; Banik, B. K. Molecules 2010, 15, 2520; (c)
Polshettiwar, V.; Varma, R. S. Tetrahedron 2010, 66, 1091; (d) Wilson, M. A.;
Filzen, G.; Welmaker, G. S. Tetrahedron Lett. 2009, 50, 4807.
N
Ph
Br
8. (a) Correa, A.; Bolm, C. Adv. Synth. Catal. 2007, 349, 2673; (b) Taillefer, M.; Xia,
N.; Ouali, A. Angew. Chem., Int. Ed. 2007, 46, 934; (c) Cristau, H.-J.; Cellier, P. P.;
Spindler, J.-F.; Taillefer, M. Chem. Eur. J. 2004, 10, 5607; (d) Huang, H.; Yan, X.;
Zhu, W.; Liu, H.; Jiang, H.; Chen, K. J. Comb. Chem. 2008, 10, 617; (e) Zhu, L.;
Cheng, L.; Zhang, Y.; Xie, R.; You, J. J. Org. Chem. 2007, 72, 2737; (f) Ma, H.-C.;
Jiang, X.-Z. J. Org. Chem. 2007, 72, 8943; (g) Rout, L.; Jammi, S.; Punniyamurthy,
T. Org. Lett. 2007, 9, 3397; (h) Huang, Y.-Z.; Miao, H.; Zhang, Q.-H.; Chen, C.; Xu,
J. Catal. Lett. 2008, 122, 344; (i) Huang, Y.-Z.; Gao, J.; Ma, H.; Miao, H.; Xu, J.
Tetrahedron Lett. 2008, 49, 948; (j) Chang, J. W. W.; Xu, X.; Chan, P. W. H.
Tetrahedron Lett. 2007, 48, 245; (k) Deng, W.; Wang, Y. F.; Zhang, C.; Liu, L.; Guo,
Q. X. Chin. Chem. Lett. 2006, 17, 313; (l) Kantam, M. L.; Yadav, J.; Laha, S.;
Sreedhar, B.; Jha, S. Adv. Synth. Catal. 2007, 349, 1938.
9. Xu, H.-J.; Zheng, F.-Y.; Liang, Y.-F.; Cai, Z.-Y.; Feng, Y.-S.; Che, D.-Q. Tetrahedron
Lett. 2010, 51, 669.
10. (a) Petersen, M.; Keiner, A. Green Chem. 1999, 99; (b) Sweeney, S. M.; Korkko, J.;
Ala-kokko, L.; Antomo, J. D. S. J. Biol. Chem. 2002, 277, 4223.
11. (a) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189;
(b) Swapna, K.; Kumar, A. V.; Reddy, V. P.; Rao, K. R. J. Org. Chem. 2009, 74,
7514; (c) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11,
951; (d) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11,
1697; (e) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Synlett 2009, 2783;
(f) Reddy, V. P.; Kumar, A. V.; Rao, K. R. Chem. Lett. 2010, 39, 212; (g) Reddy, V.
P.; Kumar, A. V.; Rao, K. R. Tetrahedron Lett. 2010, 51, 3181.
N
6
57
Br
N
7
8
67
54
Br
Br
N
N
N
N
O
O
O
9
51
59
O
10
N
Br
S
S
a
Reaction conditions: aryl halides (1.0 mmol), CuI (20 mol %), DMSO (3.0 mL),
12. General procedure for the synthesis of N-aryl pyrroles: to a stirred solution of iodo
Cs2CO3 (2.5 equiv), trans-4-hydroxy-
L-proline (2.0 equiv), 125 °C, 40 h.
benzene (1.0 mmol) and trans-4-hydroxy-L-proline (2.0 equiv) in dry DMSO
b
Isolated yield.
24 h.
(3.0 mL) at rt was added CuI (20 mol %) followed by Cs2CO3 (2.5 equiv) and
heated at 110 °C for 24 h. The progress of the reaction was monitored by TLC.
After the reaction was complete, the reaction mixture was allowed to cool, and
c
d
At 110 °C.