4
1 References and Notes
70 17 In the cases of [PdCl2(dpae)] and [PdCl2(dpaf)], solvent
71
72
molecules found in the voids could not be modeled to an
acceptable level, and therefore, SQUEEZE was applied.
2
3
1
2
3
W. Levason, G. Reid, Comprehensive Coordination Chemistry
II; J. A. McCleverty, T. J. Meyer, Eds.; Elsevier Science:
Amsterdam, The Netherlands, 2004; Vol. 1, Chapter 1.12, pp 253.
J. Emsley, in Nature’s Build. Blocks an AZ Guid. to Elem. (Ed.:
J. Emsley), Oxford University Press, Oxford, UK, 2011, pp. 47–
55.
a) V. Farina, B. Krishnan, J. Am. Chem. Soc. 1991, 113, 9585. b)
R. A. Baber, S. Collard, M. Hooper, A. G. Orpen, P. G. Pringle,
M. J. Wilkinson, R. L. Wingad, Dalton Trans. 2005, 1491.
Y. Tanabe, S. Kuriyama, K. Arashiba, K. Nakajima, Y.
Nishibayashi, Organometallics 2014, 33, 5295.
a) T. Ljungdahl, K. Pettersson, B. Albinsson, J. Mårtensson, J.
Org. Chem. 2006, 71, 1677. b) J.-M. Becht, C. Catala, C. L.
Drian, A. Wagner, Org. Lett. 2007, 9, 1781. c) T. Ljungdahl, T.
Bennur, A. Dallas, H. Emtenäs, J. Mårtensson, Organometallics
2008, 27, 2490. d) J. Warnan, F. Buchet, Y. Pellegrin, E. Blart, F.
Odobel, Org. Lett. 2011, 13, 3944.
a) A. Kojima, C. D.J. Boden, M. Shibasaki, Tetrahedron Lett.
1997, 38, 3459. b) S. Y. Cho, M. Shibasaki, Tetrahedron Lett.
1998, 39, 1773. c) A. K. Gupta, S. Akkarasamiyo, A. Orthaber,
Inorg. Chem. 2017, 56, 4504.
73 18 a) M.-N. Birkholz, Z. Freixa, P. W. N. M. van Leeuwen, Chem.
4
74
75
Soc. Rev. 2009, 38, 1099. b) M.-N. Birkholz, Z. Freix, P. W. N.
M. van Leeuwen, J. Chem. Soc., Dalton Trans. 1999, 1519.
76 19 In the case of dpam, the dimer ([Pd2Cl4(dpam)2]) might be
5
6
7
77
78
79
80
81
formed due to the too narrow bite angle, resulting in the higher
reaction yield (34%) than dpae (15%) and dpap (29%). Actually,
complexation of dpam with platinum(II) dichloride gives a
mixture of the monomer and dimers: A. Babai, G. B. Deacon, G.
Meyer, Z. Anorg. Allg. Chem. 2004, 630, 399.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
4
5
82 20 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K.
Hirotsu, J. Am. Chem. Soc. 1984, 106, 158.
84 21 We conducted Suzuki-Miyaura coupling reaction with dppe
83
85
86
87
88
89
90
91
under the same condition as Scheme 5. The NMR yield was 75%,
which was higher than that of dpae. This difference might be
caused by the stronger coordination ability of the phosphorus
atoms than that of the arsenic ones; the catalyst with dppe is
more durable than that of dpae under the heating condition. To
understand the difference between arsenic and phosphorus
systems, further investigation is under way.
6
7
a) P. M. Uberman, M. N. Lanteri, S. C. P. Puenzo, S. E. Martín,
Dalton Trans. 2011, 40, 9229. b) G. J. Quinteros, P. M. Uberman,
S. E. Martín, Eur. J. Org. Chem. 2015, 2698.
H. Imoto, C. Yamazawa, S. Tanaka, T. Kato, K. Naka, Chem.
Lett. 2017, 46, 821.
8
9
For reviews, see: a) H. Imoto, K. Naka, Chem. Eur. J. 2019, 25,
1883. b) H. Imoto, Polym. J. 2018, 50, 837.
30 10 a) P. S. Elmes, S. Middleton, B. O. West, Aust. J. Chem. 1970,
31
32
23, 1559. b) J. W. B. Reesor, G. F. Wright, J. Org. Chem. 1957,
22, 382.
33 11 T. Kato, S. Tanaka, K. Naka, Chem. Lett. 2015, 44, 1476.
34 12 a) M. Ishidoshiro, Y. Matsumura, H. Imoto, Y. Irie, T. Kato, S.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Watase, K. Matsukawa, S. Inagi, I. Tomita, K. Naka, Org. Lett.
2015, 17, 4854. b) M. Ishidoshiro, H. Imoto, S. Tanaka, K. Naka,
Dalton Trans. 2016, 45, 8717. c) Y. Matsumura, M. Ishidoshiro,
Y. Irie, H. Imoto, K. Naka, K. Tanaka, S. Inagi, I. Tomita, Angew.
Chem. Int. Ed. 2016, 55, 15040. d) T. Kato, H. Imoto, S. Tanaka,
M. Ishidoshiro, K. Naka, Dalton Trans. 2016, 45, 11338. e) H.
Imoto, I. Kawashima, C. Yamazawa, S. Tanaka, K. Naka, J.
Mater. Chem. C 2017, 5, 6697. f) H. Imoto, A. Urushizaki, I.
Kawashima, K. Naka, Chem. Eur. J. 2018, 24, 8797. g) H. Imoto,
T. Fujii, S. Tanaka, S. Yamamoto, M. Mitsuishi, T. Yumura, K.
Naka, Org. Lett. 2018, 20, 5952. h) I. Kawashima, H. Imoto M.
Ishida, H. Furuta, S. Yamamoto, M. Mitsuishi, S. Tanaka, T.
Fujii, K. Naka, Angew. Chem. Int. Ed. in press (DOI:
10.1002/anie.201904882)
49 13 For other groups’ recent works on functional organoarsenic
50
51
52
53
54
55
56
57
58
59
materials, see: a) J. P. Green, Y. Han, R. Kilmurray, M. A.
McLachlan, T. D. Anthopoulos, M. Heeney, Angew. Chem. Int.
Ed. 2016, 55, 7148. b) V. H. K. Fell, A. Mikosch, A.-K. Steppert,
W. Ogieglo, E. Senol, D. Canneson, M. Bayer, F. Schoenebeck,
A. Greilich, A. J. C. Kuehne, Macromolecules 2017, 50, 2338. c)
J. P. Green, S. J. Cryer, J. Marafie, A. J. P. White, M. Heeney,
Organometallics 2017, 36, 2632. d) J. P. Green, A. K. Gupta, A.
Orthaber, Eur. J. Inorg. Chem. 2019, 1539. e) J. P. Green, H.
Cha, M. Shahid, A. Creamer, J. R. Durrant, M. Heeney, Dalton
Trans. 2019, 48, 6676.
60 14 S. Tanaka, H. Imoto, T. Kato, K. Naka, Dalton Trans. 2016, 45,
7937.
62 15 S. Tanaka, H. Imoto, T. Yumura, K. Naka, Organometallics
2017, 36, 1684.
64 16 CCDC 1916737 ([PdCl2(dpae)]), 1916734 ([PdCl2(dpap)]),
61
63
65
66
67
68
69
1916733 ([PdCl2(dpab)]), 1916735 ([PdCl2(dpaq)]), 1916736
([PdCl2(dpaf)]), and 1916738 ([PdCl2(xantas)]) contain the
supplementary crystallographic data for this paper. These data
are provided free of charge by The Cambridge Crystallographic
Data Centre.