Scheme 4
ketone 5 and enal 6 required the correct introduction of the
treatment with DDQ to cleave the PMB ether to give the
alcohol 16 (77%). Mitsunobu macrolactonization16 proceeded
smoothly to deliver macrocycles 4 and 17 (70% combined
yield after HPLC separation). This Mitsunobu protocol was
essential, as attempts to macrolactonize the C19-epi seco-
acid 18 (prepared according to Schemes 3 and 4 starting with
dimethyl (S)-malate), under both Yamaguchi17 and Keck18
conditions (Scheme 5), resulted in concomitant, base-
remote C15 stereocenter, necessitating the use of reagent
control.11a,b Boron aldol coupling using (+)-Ipc2BCl/Et3N in
Et2O gave 13 as a 3:1 mixture in favor of the desired (15S)-
1
adduct (91% combined yield), as confirmed by H NMR
analysis of the corresponding (R)- and (S)-MTPA esters using
the advanced Mosher method.15 Protection of the resultant
secondary hydroxy group gave the TBS ethers 14. Attempts
to hydrolyze the methyl ester by standard means (viz. KOH/
THF/MeOH, LiOH, Ba(OH)2, etc.) failed. Thus, a three-step
sequence of reduction with DIBAL, followed by Dess-
Martin oxidation and subsequent NaClO2 oxidation, was
employed to reveal the acid 15 in 85% yield, followed by
Scheme 5
(5) (a) Hung, D. T.; Chen, J.; Schreiber, S. L. Chem. Biol. 1996, 3, 287.
(b) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.;
Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35,
243.
(6) (a) Lindel, T.; Jensen, P. R.; Fenical, W.; Long, B. H.; Casazza, A.
M.; Carboni, J.; Fairchild, C. R. J. Am. Chem. Soc. 1997, 119, 8744. (b)
Ciomei, M.; Albanese, C.; Pastori, W.; Grandi, M.; Pietra, F.; D’Ambrosio,
M.; Guerriero, A.; Battistini, C. Abstract 30, Proc. Am. Ass. Canc. Res.
1997, 38, 5.
(7) (a) Shimizu, A.; Nishiyama, S. Synlett 1998, 1209. (b) Shimizu, A.;
Nishiyama, S. Tetrahedron Lett. 1997, 38, 6011. (c) Ghosh, A. K.;
Mathivanan, P.; Cappiello, J. Tetrahedron Lett. 1997, 38, 2427. (d) Mulzer,
J.; Hanbauer, M. Tetrahedron Lett. 2000, 41, 33. (e) Ghosh, A. K.; Wang,
Y. Tetrahedron Lett. 2000, 41, 2319. (f) Ghosh, A. K.; Wang, Y.
Tetrahedron Lett. 2000, 41, 4705. (g) Mulzer, J.; Ohler, E.; Dorling, K. E.
Tetrahedron Lett. 2000, 41, 6323. (h) Ghosh, A. K.; Wang, Y. J. Am. Chem.
Soc. 2000, 122, 11027.
(8) For a review on marine macrolide synthesis, see: Norcross, R. D.;
Paterson, I. Chem. ReV. 1995, 95, 2041.
(9) For some examples of macrocyclic stereocontrol in polyketide
synthesis, see: (a) Still, W. C.; Novack, V. J. J. Am. Chem. Soc. 1984,
106, 1148. (b) Still, W. C.; Romero, A. G. J. Am. Chem. Soc. 1986, 108,
2105. (c) Schreiber, S. L.; Sammakia, T.; Hulin, B.; Schulte, G. J. Am.
Chem. Soc. 1986, 108, 2106. (d) Paterson, I.; Rawson, D. J. Tetrahedron
Lett. 1989, 30, 7463. (e) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea,
P.; Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287. (f) Evans, D. A.;
Ripin, D. H. B.; Halstead, D. P.; Campos, K. R. J. Am. Chem. Soc. 1999,
121, 6816.
induced, scrambling of the (Z)-enoate, leading to the
undesired trans-macrocycle 19 and the required macrocycle
4 (6:1 ratio, respectively).
(10) (a) Paterson, I.; Smith, J. D.; Ward, R. A. Tetrahedron 1995, 51,
9413. (b) Paterson, I.; Cumming, J. G.; Ward, R. A.; Lamboley, S.
Tetrahedron 1995, 51, 9393. (c) Paterson, I.; Watson, C.; Yeung, K. -S,;
Wallace, P. A.; Ward, R. A. J. Org. Chem. 1997, 62, 452.
(11) (a) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.;
McClure, C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663. (b) Paterson,
I.; Oballa, R. M.; Norcross, R. D. Tetrahedron Lett. 1996, 37, 8581. (c)
Paterson, I.; Osborne, S. A. Tetrahedron Lett. 1990, 31, 2213.
The controlled elaboration of the 20-membered macrolide
4 into the laulimalide core was now investigated (Scheme
(12) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
(13) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.;
Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
Org. Lett., Vol. 3, No. 2, 2001
215