Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C9CC08727C
COMMUNICATION
Journal Name
1
2
(a) L. Crespo, G. Sanclimens, M. Pons, E. Giralt, M.
Royo, and F. Albericio, Chem. Rev. 2005, 105, 1663-
1682;(b) E. Valeur and M. Bradley, Chem. Soc. Rev.
2009, 38, 606–631.
As shown in Scheme 5, oxidative addition of aryl C-O
electrophiles to Ni(0) complex led to the formation of
intermediate
isocyanate with Ni complex
I
. Intermediate II is formed through interaction of
. This mechanism may be
I
D. G. Brown and J. Boström, J. Med. Chem. 2016, 59
,
involving a Zn-mediated reduction of the Ni(II) to generate a
Ni(I) species to produce intermediate II. Isocyanate can
coordinate with intermediate II to form intermediate III. In
intermediate III, aryl ring added to carbon of isocyanate group
4443−4458.
3
4
A. Gomtsyan. Chem. Heterocycl. Comp. 2012, 48, 7-10.
A. Greenberg. The amide linkage: Structural
significance in chemistry, biochemistry, and materials
science. John Wiley & Sons; 2000.
and the formed amide can coordinate with metal center (IV
)
5
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R.
Humphrey, J. L. Leazer, Jr., R. J. Linderman, K. Lorenz,
J. Manley, B. A. Pearlman, A. Wells, A. Zaksh and T. Y.
which in the presence of Zn the Ni(0) catalyst is regenerated
again and next cycle is started.
Zhang. Green Chem. 2007, 9, 411-20.
6
7
R. M. de Figueiredo, J.-S. Suppo and J.-M. Campagne,
Chem. Rev. 2016, 116, 12029–12122.
(a) E. Kianmehr, A. Rajabi and M. Ghanbari,
Tetrahedron Lett. 2009, 50, 1687. (b) T. Miura, Y.
Takahashi and M. Murakami, Chem. Commun. 2007,
3577. (c) T. Koike, M. Takahashi, N. Arai and A. Mori,
Chem. Lett. 2004, 1364. (d) S. Roy, S. Roy and G. W.
Gribble, Tetrahedron 2012, 68, 9867-9923. (e) T. T. S.
Lew, D. S. W. Lima and Y. Zhang, Green Chem. 2015, 17
,
5140-5143. (f) E. Serrano and R. Martin, Eur. J. Org.
Chem. 2018, 3051–3064.
8
9
(a) K.Shin, J. Ryu and S. Chang, Org. Lett. 2014, 16,
2022. (b) B.Zhou, W. Hou, Y. Yang, Y. Li, Chem. Eur.
J.2013, 19, 4701. (c) K. Muralirajan, K. Parthasarathy
and C.-H. Cheng, Org. Lett. 2012, 14, 4262. (d) K. D.
Hesp, R. G. Bergman and J.A. Ellman, J. Am. Chem. Soc.
2011, 133, 11430.
A. Correa and R. Martin, J. Am. Chem. Soc. 2014, 136
7253–7256.
,
10 a) J. Cornella, C. Zarate and R. Martin, Chem. Soc. Rev.,
2014, 43, 8081-8097. b) C. Zarate, M. van Gemmeren,
R.J. Somervillea, R. Martin, Adv. Organomet. Chem.
2016, 66, 143-222. c) M. Tobisu and N. Chatani, Top
Curr. Chem. (Z) 2016, 374:41. d) M. Tobisu and N.
Chatani, Acc. Chem. Res. 2015, 48, 1717–1726.
Scheme 5. Proposed mechanism for nickel-catalyzed synthesis
of benzamides using aryl-azine ethers
11 a) N. Iranpoor and F. Panahi, Org. Lett. 2015, 17, 214–
217. b) Y. Zhao, G.King, M.H.T. Kwan, and A. J. Blacker,
Org. Process Res. Dev. 2016, 20, 2012–2018. c) M. M.
In summary, we have developed a novel and efficient
methodology for the conversion of phenolic compounds to
their corresponding benzamides. The reaction proceeds with a
catalytic amount of Ni under mild conditions. This procedure is
characterized by its operational simplicity and the ready
availability of the substrates employed. This approach also
established a new choice for the synthesis of amides using
isocyanates as amidating agent without the need for the
Heravi, F. Panahi, and N. Iranpoor, Org. Lett., 2018, 20
,
2753–2756. d) L. Wang, Y. Wang, J. Shen, Q. Chen and
M.-Y. He, Org. Biomol. Chem., 2018, 16, 4816-4820. f)
E. Etemadi-Davan and N. Iranpoor, Chem. Commun.,
2017, 53, 12794-12797. g) N. Iranpoor, F. Panahi and F.
Jamedi, J. Organomet. Chem. 2015, 781, 6-10. h) Y.
Wang, J. Shen, Q. Chen, L. Wang and M. He, Chinese
Chem. Lett., 2018, DOI: 10.1016/j.cclet.2018.09.009.
12 Some example of nickel catalyzed reductive
preparation
of
sensitive
organometallic
reagents.
Carbodiimides could be used instead of aryl isocyanates to
resolve the trimerization problem associated with them in the
presence of zerovalent metal Zn or Ni.
We are thankful to the Iran Science Elites Federation for
their financial support. Also, financial support from the
research councils of Alzahra University and Shiraz University
are acknowledged.
functionalization reactions: a)
A. Dey, S. Sasmal, K.
, 433-
Seth, G. K. Lahiri and D. Maiti, ACS Catal. 2017,
7
437. b) A. Maji, S. Rana, Akanksha, D. Maiti, Angew.
Chem. Int. Ed. 2014, 53, 2428-2432. c) T. Patra, S.
Agasti, A. Modak and D. Maiti Chem. Commun., 2013,
49, 8362-8364. d) A. García-Domínguez, Z. Li, C.
Nevado, J. Am. Chem. Soc. 2017, 139, 6835-6838. e) Y.
Jin and C. Wang Angew. Chem. Int. Ed. 2019, 58, 6722-
6726.
13 F. Paul, S. Moulin, O. Piechaczyk, P. Le Floch, J.
A.Osborn, J. Am. Chem. Soc. 2007, 129, 7294.
14 F. Panahi, F. Jamedi and N. Iranpoor, Eur. J. Org. 2016,
780-788
Conflicts of interest
There are no conflicts to declare.
15 E. Serrano and R. Martin, Angew. Chem. Int. Ed. 2016,
55, 11207–11211; Angew. Chem. 2016, 128, 11373–
11377.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins