C O M M U N I C A T I O N S
Table 2. Dynamic Kinetic Resolution of
3,5-Dialkylcyclopentenones
conjugate reduction as well as mechanistic investigations of this
catalyst system.
Acknowledgment. We thank the National Institutes of Health
(GM 46059) for funding and Pfizer, Merck and Bristol-Myers
Squibb for additional unrestricted support. V.J. thanks Natural
Sciences and Engineering Research Council (NSERC) of Canada
for a predoctoral fellowship. The authors also thank Professor
Gregory C. Fu, Dr. Daniel H. Appella, and Dr. Alexander R. Muci
for helpful discussions as well as Dr. Jeffrey H. Simpson for
assistance with NMR measurements.
Supporting Information Available: Preparation and characteriza-
tion of all substrates and products (PDF). This material is available
References
(1) Reviews on conjugate addition: (a) Feringa, B. L. Acc. Chem. Res. 2000,
33, 346. (b) Krause, N.; Hoffmann-Ro¨der, A. Synthesis 2001, 171. (c)
Hayashi, T. Synlett 2001, 879.
(2) Leading references on asymmetric conjugate addition: (a) Takaya, Y.;
Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 1998, 120, 5579. (b)
Hayashi, T.; Senda. T.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc.
1999, 121, 11591. (c) Hu, X.; Chen, H.; Zhang, X. Angew. Chem., Int.
Ed. 1999, 38, 3518. (d) Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1999,
64, 2988. (e) Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vries, A. H.;
Naasz, R.; Feringa, B. L. Tetrahedron 2000, 56, 2865. (f) Escher, I. H.;
Pfaltz, A. Tetrahedron 2000, 56, 2879. (g) Chataigner, I.; Gennari, C.;
Ongeri, S.; Piarulli, U.; Ceccarelli, S. Chem. Eur. J. 2001, 7, 2628. (h)
Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001,
123, 755. (i) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem.
Soc. 2002, 124, 779.
a See Supporting Information for the determination of relative and
absolute stereochemistry of 2a. Absolute stereochemistry of all other
products was assigned by analogy to 2a. b Isolated yield (sum of both
diastereomers; average of at least two runs of >95% purity as determined
by GC, 1H, and 13C NMR). c Determined by HPLC. Average % ee and dr
for at least two runs. d Reaction at -50 °C. e Reaction at -30 °C. f Reaction
at 0 °C. g 3.1 equiv of PMHS and 2.4 equiv of NaOt-Bu, reaction time )
48 h.
(3) Pioneering studies on Cu-H phosphine complexes: (a) Mahoney, W.
S.; Stryker, J. M. J. Am. Chem. Soc. 1989, 111, 8818. (b) Lipshutz, B.
H.; Keith, J.; Papa, P.; Vivian, R. Tetrahedron Lett. 1998, 39, 4627. (c)
Mori, A.; Fujita, A.; Kajiro, H.; Nishihara, Y.; Hiyama, T. Tetrahedron
1999, 55, 4573.
reduction under these conditions. The addition of t-BuOH (5 equiv)
as a kinetically labile proton source enhanced the rate of racem-
ization, resulting in the isolation of 2 with high enantiomeric and
diastereomeric excesses (Table 2). PMHS proved to be the silane
of choice; the use of more reactive silanes (e.g., Ph2SiH2) resulted
in diminished enantioselectivities. In most cases where the R-sub-
stituent was either Me or 1° alkyl, it was necessary to perform the
dynamic kinetic resolutions at higher temperatures than the corre-
sponding kinetic resolutions, presumably to achieve efficient
racemization of 1 (entries 1, 5-6). In contrast, performing the DKR
of isopropyl-substituted ketone 1c at 0 °C (the optimum temperature
for the KR) resulted in a diminished diastereomeric ratio (85:15).
We hypothesized that this was due to competitive partial decom-
position of silyl enol ether 4 and subsequent epimerization. Thus,
lowering the reaction temperature to -30 °C allowed for the clean
conversion of (()-1c (94% yield, 93% ee, 93:7 dr). Greater than
95% conversion of the starting material to the desired reduction
product was observed in all reactions.
(4) Asymmetric conjugate reductions using cobalt catalysts and NaBH
4: (a)
Leutenegger, U.; Madin, A.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1989,
28, 60. (b) Misun, M.; Pfaltz, A. HelV. Chim. Acta 1996, 79, 961. (c)
Yamada, T.; Ohtsuka, Y.; Ikeno, T. Chem. Lett. 1998, 1129 and references
therein.
(5) (a) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald,
S. L. J. Am. Chem. Soc. 1999, 121, 9473. (b) Moritani, Y.; Appella, D.
H.; Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 6797.
(c) Yun, J.; Buchwald, S. L. Org. Lett. 2001, 3, 1129.
(6) Leading references on kinetic resolution: (a) Kagan, H. B.; Fiaud, J. C.
Top. Stereochem. 1988, 18, 249. (b) Hoveyda, A. H.; Didiuk, M. T. Curr.
Org. Chem. 1998, 2, 489. (c) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N.
AdV. Synth. Catal. 2001, 343, 5. (d) Blackmond, D. G. J. Am. Chem. Soc.
2001, 123, 545. For a recent example of kinetic resolution of cyclo-
hexenones, see: Naasz, R.; Arnold, L. A.; Minnaard, A. J.; Feringa,
B. L. Angew. Chem., Int. Ed. 2001, 40, 927.
(7) Reviews on dynamic kinetic resolution: (a) Noyori, R.; Tokunanga, M.;
Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36. (b) Ward, R. S.
Tetrahedron: Asymmetry 1995, 6, 1475. (c) Caddick, S.; Jenkins, K. Chem.
Soc. ReV. 1996, 25, 447. (d) Stecher, H.; Faber, K. Synthesis 1997, 1. (e)
Huerta, F. F.; Minidis, A. B. E.; Ba¨ckvall, J.-E. Chem. Soc. ReV. 2001,
30, 321.
In conclusion, the method we report here represents an example
of a dynamic kinetic resolution with simultaneous creation of two
nonadjacent chiral centers. The combination of catalytic amounts
of CuCl, a commercially available chiral bis-phosphine, and NaOt-
Bu with PMHS generates a highly enantio- and diastereoselective
complex that reacts exclusively via 1,4-reduction. The dynamic
kinetic resolution conditions for this catalytic system were achieved
by employing stoichiometric amounts of NaOt-Bu and t-BuOH.
Our current efforts are focused on the discovery of new copper
complexes that will improve the substrate scope of the asymmetric
(8) Selectivity factor, s ) kf/ks ) ln[(1 - C)(1 - ee)]/[(1 - C)(1 + ee)],
where ee is the percent enantiomeric excess of 1 and C is the conversion.
For each substrate, comparable selectivity factors (s) were observed at
low (24-30%) and at high (45-57%) conversions.
(9) Selectivity factors (s) calculated using the enantiomeric excess of reduction
product 2 were consistent with values calculated using the % ee of
unreacted 1 for the several cases examined. (In these cases, s ) kf /ks )
ln[1 - C(1 + ee)]/[(1 - C(1 - ee)], where ee is the percent enantiomeric
excess of 2 and C is the conversion.)
(10) Pagenkopf, B. L.; Kru¨ger, J.; Stojanovic, A.; Carreira, E. M. Angew. Chem.,
Int. Ed. Engl. 1998, 37, 3124.
(11) Lorenz, C.; Schubert, U. Chem. Ber. 1995, 128, 1267.
JA025603K
9
J. AM. CHEM. SOC. VOL. 124, NO. 12, 2002 2893