COMMUNICATIONS
11.7 Hz, J3,4 3.2 Hz, H-3), 4.90 ± 4.84 (m, 2H, H-1, H-4'), 4.69 (dd,
1H, J 6.2, 10.9 Hz, OCH2Fmoc), 4.51 (dd, 1H, J 5.9, 10.9 Hz,
OCH2Fmoc), 4.10 (dd, 1H, J 5.3, 12.3 Hz, H-9'b), 3.84 (dd, 1H,
J5,6a 7.5 Hz, J6a,6b' 10.3 Hz, H-6a), 3.15 (dd, 1H, J5,6b 4.4 Hz,
Synthesis and Membrane-Binding Properties of
a Characteristic Lipopeptide from the
Membrane-Anchoring Domain of Influenza
Virus A Hemagglutinin**
J6a,6b 10.3 Hz, H-6b), 2.69 (dd, 1H, J3'e,3'a
12.6, J3'e,4' 4.4 Hz,
H-3'e), 1.22 (d, 3H, J 6.5 Hz, Tg); 13CNMR (DEPT) (100.6 MHz,
CD3OD): d 100.77 (C-1), 99.93 (C-2'), 38.83 (C-3'), 19.32 (Tg).
[17] M. Gewehr, H. Kunz, Synthesis 1997, 1499.
Frank Eisele, Jürgen Kuhlmann, and
Herbert Waldmann*
[18] J. Habermann, H. Kunz, Tetrahedron Lett. 1998, 39, 265.
[19] L. A. Carpino, A. S. El-Faham, C. Minor, F. Albericio, J. Chem. Soc.
Chem. Commun. 1994, 210.
Key events in the establishment and progression of viral
infection are attachment and fusion of the virus with the cell
and budding of new virus particles from the infected cell. This
complex multistep process is decisively influenced and
determined by posttranslationally modified proteins embed-
ded in the viral lipid bilayer. For instance, hemagglutinin from
influenza virus A is glycosylated in the extracellular domain[1, 2]
and S-palmitoylated next to the transmembrane region (Fig-
ure 1).[3, 4] The glycoprotein part is responsible for initiation of
viral infection through selective binding to sialic acid recep-
tors on the surface of the host cell. The lipid residues are
required for the interaction between the cell membrane and
the free capsid during budding of viral offspring[5, 6] and are
thought to mediate protein ± protein and protein ± lipid inter-
actions in the viruses.[7] In addition, the lipidated regions may
play an important role in fusion processes of the viral
membrane with the endosome after entry of the viral particle
into the cell.[8, 9] However, this proposal is controversial, since
other investigations indicated that the lipidated cytoplasmic
tail of the complex viral lipoglycoproteins is not essential for
its membrane fusion activity.[10]
For the study of these and related processes in precise
molecular detail, lipidated peptides which represent the
characteristic linkage region between the protein backbone
and the lipid groups and which additionally carry a marker by
which they can be traced in biological systems may be
employed as efficient molecular probes.[11] However, their
synthesis is complicated by the pronounced base lability of the
palmitic acid thioesters which hydrolyse spontaneously at
pH > 7.[12] For the synthesis of such labile peptide conjugates
enzymatic methods may open up viable alternatives to
classical chemical techniques.[11] In this paper we report on
the development of the p-phenylacetoxybenzyl (PAOB) ester,
a new enzyme-labile protecting group for carboxyl function-
[20] 19: [a]2D2 ꢀ20.8 (c 1.0, CH3CN). FAB-MS (nitrobenzyl alcohol
(nba), positive ion): m/z (%): 3754.4 (62.3) [M(2 Â 13C) ꢀ 4 Â (tert-
butyl)2 Â Na ], calcd: 3753.74, 3755.1 (100) [M(3 Â 13C) ꢀ 3 Â (tert-
butyl)2 Â Na ], 3755.8 (82.7) [M(4 Â 13C) ꢀ 4 Â (tert-butyl)2 Â
1
Na ], 3757.2 (49.1) [M(5 Â 13C) ꢀ 4 Â (tert-butyl) 2 Â Na ]; HNMR
(400 MHz, [D6]DMSO, TMS): d 8.48 ± 7.41 (m, 18H, NH), 7.38 (mc
5H, HAr-Bn), 7.28 ± 7.16 (m, 5H, HAr-F), 7.11 (d, 2H, J 7.9 Hz), 7.03
(d, 2H, J 7.6 Hz, 2 Â (H2-Y, H6-Y)), 6.82 ± 6.76 (m, 4H, 2 Â (H3-Y,
H5-Y)), 6.70, 6.55 (Sbr, RNH(e,x,h)), 5.22 ± 5.14 (m, 5H, H-4, H-7', H-8',
CH2Bn), 4.92 ± 4.85 (m, 2H, H-1, H-3); 4.78 ± 469 (m, H-4'), 4.65 ± 3.24
a
a
a
a
b
(m, 58H, F , 2 Â Y , 2 Â V , 3 Â S , 3 Â S , CH2CH2(OCH2CH2CH2)2
CH2CH2, Ra, Da, 2 Â Aa, 4 Â Pa, 2 Â Ta, Ga, Va, H-2, H-5, H-6', H-9',
2 Â Tb, 4 Â Pd, H-6a, H-5'), 3.22 ± 2.60 (m, 10H, Fb, 2 Â Yb, H-6b, Rd,
H-3'e), 2.57 ± 2.38 (m, 4H, Db, CH2CH2Pmc), 2.38 ± 2.35 (m, 2H,
CH2CONH-G-V), 2.49, 2.46 (s, 6H, o,o'-CH3Pmc), 2.18 ± 1.58 (m,
18H, 4 Â Pb, 4 Â Pg, CH2CH2Pmc), 2.03, 2.00, 1.99, 1.93, 1.91, 1.85, 1.82,
1.75, 1.71, 1.66 (10 Â s, 30H, m-CH3Pmc, 6 Â OAc, 3 Â NHAc), 1.53 ±
1.02 (m, 9H, 2 Â Vb, Rg, Rb, H3'a, 2 Â Ab), 1.35, 1.23, 1.20, 1.15, 1.11,
1.08, 1.06, 1.05, (s, 69H, 7 Â C(CH3)3, C(CH3)2Pmc), 0.98 ± 0.90 (m,
3H, T1g), 0.89 ± 0.83 (m, 3H, T2g), 0.82 ± 0.78 (m, 12H, Vg); 13CNMR
(DEPT) (100.6 MHz, [D6]DMSO): d 98.40 (C-1), 98.01 (C-2'), 41.18,
40.97, 38.40, 36.95, 35.87 (2 Â Yb, Fb, C-3', Db, Rd, CH2CONH), 32.12
(CH2CH2Pmc), 19.05, 18.98, 18.75, 18.75, 18.16, 18.07, 17.95 (2 Â Vg,
g
g
T1 , o,o'-CH3Pmc), 16.77 16.72, 16.00 (T2 , 2 Â Ab), 11.82 (m-CH3Pmc).
[21] 20: [a]2D2 ꢀ76.9 (c 1.0, H2O); FAB-MS (nba LiBr, positive ion):
m/z (%): 2770.7 (0.62) [MLi ], calcd: 2770.30; 1HNMR (1H-1H
COSY) (400 MHz, D2O): d 7.37 ± 7.24 (m, 3H), 7.23, 7.16 (m, 2H,
HAr-F), 7.08 ± 6.97 (m, 4H, 2 Â (H2-Y, H6-Y)), 6.81 ± 6.72 (m, 4H, 2 Â
(H3-Y, H5-Y)), 4.90 (mc, 1H, H-1), 4.72 ± 4.66 (m, 1H, Da), 4.64 ± 4.59
(m, 2H, Fa, Ra), 4.57 ± 4.50 (m, 1H, A1a), 4.49 ± 4.42 (m, 6H, A2a, 2 Â
Sa, 2 Â Ya), 4.41 ± 4.33 (m, 6H, 4 Â Pa, S3a, T1a), 4.32 ± 4.29 (m, 2H, V1
,
a
a
T2 ), 4.28 ± 4.23 (m, 1H, T1b), 4.22 ± 4.17 (m, 1H, T2b), 4.12 ± 4.03 (m,
3H, H-2, V2a, S1b), 4.01 ± 3.27 (m, 40H, H-3, H-4, H-5, H-6, H-4', H-5',
H-6', H-7', H-8', H-9', NH(CH2CH2O)3CH2CH2CONH, 2 Â Sb, Ga,
4 Â Pd), 3.17 (mc, 2H, Rd), 3.10 ± 2.99 (m, 1H, Fba), 2.90 ± 2.77 (m, 7H,
2 Â Yb, Db, Fbb), 2.67 (dd, 1H, H-3'e), 2.60 ± 2.54 (m, 2H, CH2CONH-
G-V-), 2.33 ± 2.18 (m, 4H 4 Â Pba), 2.11 ± 1.77 (m, 15H, 2 Â Vb, 4 Â Pbb
,
4 Â Py, Rba), 2.03, 2.01, 1.93 (s, 9H, 3 Â NHAc), 1.76 ± 1.59 (m, 4H,
H-3'a, Rbb, Rg), 1.34 (m, 6H, J 6.5 Hz, 2 Â Ab), 1.30 ± 1.21 (m, 3H,
T1g), 1.15 (d, 3H, J 6.2 Hz, T2 ), 0.97 ± 0.85 (m, 12H, 2 Â Vg);
g
13CNMR (DEPT) (100.6 Mhz, D2O): d 99.62 (C-1), 99.20 (C-2'),
22.14, 21.94, 21.49, (3 Â NHAc), 18.73, 18.39, 18.22, 17.54 (2 Â Tg, 2 Â
Vg), 15.11, 14.92 (2 Â Ab).
[*] Prof. Dr. H. Waldmann
[22] For the importance of this key property, see Section 2 in ref. [2a],
p. 885.
Max-Planck-Institut für molekulare Physiologie
Abteilung Chemische Biologie
and Universität Dortmund
Institut für Organische Chemie
Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
Fax: (49)231-133-2499
Dr. J. Kuhlmann
Max-Planck-Institut für molekulare Physiologie
Abteilung Strukturelle Biologie
Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)
Dr. F. Eisele
Universität Karlsruhe
Institut für Organische Chemie
Richard-Willstätter-Allee 2, 76128 Karlsruhe (Germany)
[**] This research was supported by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie.
Angew. Chem. Int. Ed. 2001, 40, No. 2
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4002-0369 $ 17.50+.50/0
369