ACS Catalysis
Research Article
(4) Groger, H.; Hummel, W. Curr. Opin. Chem. Biol. 2014, 19, 171−
(21) For some reviews about w-TAs, see: (a) Hohne, M.;
Bornscheuer, U. in Enzyme Catalysis in Organic Synthesis, 3rd ed.;
̈
̈
179.
(5) For examples of Cu-catalyzed “click” reactions, Ru-catalyzed
allylic isomerizations, the Wacker oxidation, or Suzuki and Heck cross-
coupling reactions combined with bioreduction and bioamination
processes, see: (a) Cuetos, A.; Bisogno, F. R.; Lavandera, I.; Gotor, V.
Drauz, K., Groger, H., May, O., Eds.; Wiley-VCH: Weinheim,
̈
Germany, 2012; p 779. (b) Mathew, S.; Yun, H. ACS Catal. 2012,
2, 993−1001. (c) Koszelewski, D.; Tauber, K.; Faber, K.; Kroutil, W.
Trends Biotechnol. 2010, 28, 324−332. For some examples of
bioamination applied to pharmaceutically relevant amines including
industrial processes, see: (d) Savile, C. K.; Janey, J. M.; Mundorff, E.
C.; Moore, J. C.; Tam, S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.;
Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G. W.; Hughes, G. J.
Science 2010, 329, 305−309. (e) Girardin, M.; Ouellet, S. G.;
Gauvreau, D.; Moore, J. C.; Hughes, G.; Devine, P. N.; O’Shea, P. D.;
Campeau, L.-C. Org. Process Res. Dev. 2013, 17, 61−68. (f) Chung, C.
K.; Bulger, P. G.; Kosjek, B.; Belyk, K. M.; Rivera, N.; Scott, M. E.;
Humphrey, G. R.; Limanto, J.; Bachert, D. C.; Emerson, K. M. Org.
Process Res. Dev. 2014, 18, 215−227. (g) Pavlidis, I. V.; Weis, M. S.;
Genz, M.; Spurr, P.; Hanlon, S. P.; Wirz, B.; Iding, H.; Bornscheuer, U.
T. Nat. Chem. 2016, 8, 1076−1082.
(22) For an extensive overview of the DYRKR concept, see:
(a) Applegate, G. A.; Berkowitz, D. B. Adv. Synth. Catal. 2015, 357,
1619−1632.
(23) (a) Cuetos, A.; Lavandera, I.; Gotor, V. Chem. Commun. 2013,
49, 10688−10690. (b) Limanto, J.; Ashley, E. R.; Yin, J.; Beutner, G.
L.; Grau, B. T.; Kassim, A. M.; Kim, M. M.; Kaplars, A.; Liu, Z.;
Strotman, H. R.; Truppo, M. D. Org. Lett. 2014, 16, 2716−2719.
(c) Peng, Z.; Wong, J. W.; Hansen, E. C.; Puchlopek-Dermenci, A. L.
A.; Clarke, H. J. Org. Lett. 2014, 16, 860−863.
Chem. Commun. 2013, 49, 2625−2627. (b) Ríos-Lombardía, N.; Vidal,
́
C.; Cocina, M.; Morís, F.; García-Alvarez, J.; Gonzal
́
ez-Sabín, J. Chem.
Commun. 2015, 51, 10937−10940. (c) Ríos-Lombardía, N.; Vidal, C.;
Liardo, E.; Morís, F.; García-Alvarez, J.; Gonzal
́
́
ez-Sabín, J. Angew.
Chem., Int. Ed. 2016, 55, 8691−8695. (d) Sato, H.; Hummel, W.;
Groger, H. Angew. Chem., Int. Ed. 2015, 54, 4488−4492. (e) Burda, E.;
̈
Hummel, W.; Groger, H. Angew. Chem., Int. Ed. 2008, 47, 9551−9554.
̈
(f) Boffi, A.; Cacchi, S.; Ceci, P.; Cirilli, R.; Fabrizi, G.; Prastaro, A.;
Niembro, S.; Shafir, A.; Vallribera, A. ChemCatChem 2011, 3, 347−
353.
(6) For examples of metal-catalyzed olefin metatheses coupled to
enzymatic decarboxylation, hydrolysis, or aromatization processes, see:
(a) Baraibar, A. G.; Reichert, D.; Mugge, C.; Seger, S.; Groger, H.;
̈
̈
Kourist, R. Angew. Chem., Int. Ed. 2016, 55, 14823−14827.
(b) Tenbrink, K.; Sebler, M.; Schatz, J.; Groger, H. Adv. Synth.
̈
Catal. 2011, 353, 2363−2367. (c) Scalacci, N.; Black, G. W.; Mattedi,
G.; Brown, N. L.; Turner, N. J.; Castagnolo, D. ACS Catal. 2017, 7,
1295−1300. For other successful combinations of metals and
enzymes, see: (d) Wang, Z. J.; Clary, K. N.; Bergman, R. G.;
Raymond, K. N.; Toste, F. D. Nat. Chem. 2013, 5, 100−103.
(e) Denard, C. A.; Huang, H.; Bartlett, M. J.; Lu, L.; Tan, Y.; Zhao, H.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 465−469. (f) Latham, J.;
Henry, J.-M.; Sharif, H. H.; Menon, B. R. K.; Shepherd, S. A.; Greaney,
M. F.; Micklefield, J. Nat. Commun. 2016, 7, 11873−11880.
(24) Kaulmann, U.; Smithies, K.; Smith, M. E. B.; Hailes, H. C.;
Ward, J. M. Enzyme Microb. Technol. 2007, 41, 628−637.
(25) Pannuri, S.; Kamat, S. V.; García, A. R. M. (Cambrex North
Brunswick Inc.) WO 2006/063336A2.
(26) Mutti, F. G.; Fuchs, C. S.; Pressnitz, D.; Sattler, J. H.; Kroutil,
W. Adv. Synth. Catal. 2011, 353, 3227−3233.
(7) (a) Rulli, G.; Duangdee, N.; Baer, K.; Hummel, W.; Berkessel, A.;
Groger, H. Angew. Chem., Int. Ed. 2011, 50, 7944−7947. (b) Hickey,
̈
D. P.; McCammant, M. S.; Giroud, F.; Sigman, M. S.; Minteer, S. D. J.
Am. Chem. Soc. 2014, 136, 15917−15920.
(28) For an efficient synthesis of N,N-disubstituted cis-β-amino-
cycloalkanols, see: Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew.
Chem., Int. Ed. 2007, 46, 7506−7508.
(8) (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629−661.
(b) Talapatra, S. K.; Talapatra, B. Chemistry of Plant Natural Products;
Springer-Verlag: Berlin, Heidelberg, 2015. (c) Pharmaceuticals:
Classes, Therapeutic Agents, Areas of Application; McGuire, J. L., Ed.;
Wiley-VCH: Weinheim, Germany, 2000; Vols. 1−4.
(29) (a) Bornscheuer, U. T. Angew. Chem., Int. Ed. 2016, 55, 4372−
́
4373. (b) Schmidt-Dannert, C.; Lopez-Gallego, F. Microb. Biotechnol.
2016, 9, 601−609.
(9) Kohls, H.; Steffen-Munsberg, F.; Hohne, M. Curr. Opin. Chem.
̈
(30) To prove the deactivation of PLP, once the oxidation reaction
was allowed to proceed during 1 h in the presence of PLP, all of the
ingredients for the subsequent transamination step, except PLP, were
added (see conditions in Table 3). In this case, no amine was formed
and only a mixture of ketone and alcohol was observed. In addition,
when pyridine-4-carbaldehyde, an analogue of PLP, was treated with
0.4 M aqueous NaOCl (pH 8.9), its oxidation to pyridine-4-carboxylic
acid was totally produced after 12 h.
Biol. 2014, 19, 180−192 and references therein.
(10) Barta, K.; Ford, P. C. Acc. Chem. Res. 2014, 47, 1503−1512.
(11) (a) Tauber, K.; Fuchs, M.; Sattler, J.; Pitzer, J.; Pressnitz, D.;
Koszelewski, D.; Faber, K.; Pfeffer, J.; Haas, T.; Kroutil, W. Chem. -
Eur. J. 2013, 19, 4030−4035. (b) Mutti, F. G.; Knaus, T.; Scrutton, N.
S.; Breuer, M.; Turner, N. J. Science 2015, 349, 1525−1529.
(12) (a) Fuchs, M.; Tauber, K.; Sattler, J.; Lechner, H.; Pfeffer, J.;
Kroutil, W.; Faber, K. RSC Adv. 2012, 2, 6262−6265. (b) Pickl, M.;
Fuchs, M.; Glueck, S. M.; Faber, K. ChemCatChem 2015, 7, 3121−
3124.
(31) The stability of AZADO was a limiting factor, and longer
reaction times derived from diluted media led to inactivation of the
organocatalyst. For a study of stability, see: Shibuya, M.; Nagasawa, S.;
Osada, Y.; Iwabuchi, Y. J. Org. Chem. 2014, 79, 10256−10268.
(32) For the full panel of enzymatic screenings, see the Supporting
Information. In the case of ketones 2a,b, 10 mM substrate
concentration was advisable to optimize diastereoselectivity. In the
other cases, the bioaminations proceeded well at 25 mM.
(13) Martínez-Montero, L.; Gotor, V.; Gotor-Fernan
́
dez, V.;
Lavandera, I. Green Chem. 2017, 19, 474−480.
(14) (a) Finnin, M. Am. J. Health-Syst. Pharm. 2010, 67, 1157−1164.
(b) Izawa, K.; Onishi, T. Chem. Rev. 2006, 106, 2811−2827.
(15) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835−
876.
(33) For ketones 2f,h, the selection of the optimal ω-TA was based
on previous reports (see ref 5b).
(16) (a) Cao, Q.; Dornan, L. M.; Rogan, L.; Hughes, N. L.; Muldoon,
M. J. Chem. Commun. 2014, 50, 4524−4543. (b) Tebben, L.; Studer,
A. Angew. Chem., Int. Ed. 2011, 50, 5034−5068.
(17) (a) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Brown
Ripin, D. H. Chem. Rev. 2006, 106, 2943−2989. (b) Dugger, R. W.;
Ragan, J. A.; Brown Ripin, D. H. Org. Process Res. Dev. 2005, 9, 253−
258.
of nitroxyl radicals.
(19) Shibuya, M.; Tomizawa, M. T.; Suzuki, I.; Iwabuchi, Y. J. Am.
Chem. Soc. 2006, 128, 8412−8413.
(20) Zhu, C.; Zhang, Z.; Ding, W.; Xie, J.; Chen, Y.; Wu, J.; Chen, X.;
Ying, H. Green Chem. 2014, 16, 1131−1138.
(34) Optically active amine 3c and its acetamide derivative are
precursors of fenfluramine, an anorectic agent: (a) Cerulli, J.;
Lomaestro, B. M.; Malone, M. Ann. Pharmacother. 1998, 32, 88−
102. (b) Grignaschi, G.; Samanin, R. Eur. J. Pharmacol. 1992, 212,
287−289. Amphetamine 3d is an stimulant and anorectic agent:
(c) Taylor, K. M.; Snyder, S. H. Science 1970, 168, 1487−1489.
̀
(d) Hajos, G. T.; Garattini, S. J. Pharm. Pharmacol. 1973, 25, 418−419.
Optically active 3g is a precursor of the antihypertensive agent
labetalol: (e) Gold, E. H.; Chang, W.; Cohen, M.; Baum, T.; Ehrreich,
S.; Johnson, G.; Prioli, N.; Sybertz, E. J. J. Med. Chem. 1982, 25, 1363−
1370.
4774
ACS Catal. 2017, 7, 4768−4774