10.1002/chem.201804322
Chemistry - A European Journal
FULL PAPER
and a solution of thioether ligand Ln (n= 1-4, 1.0 equiv) dissolved in
toluene (12 mL) was added. After shaking in the dark for 1 to 2 hours
and centrifugating at 3000 rpm for 15 min, the upper golden organic
phase was collected, concentrated under vacuum and dried.
We are grateful to Dr. Didier Bourissou for helpful comments on
mechanism.
Keywords: gold • photoreduction • homogeneous catalysis •
thioether ligand • mechanism
Photoreduction of AuCl3 complexes: a solution of Ln•AuCl3 complex
(n = 1–4, 60 µM) in dry dichloromethane or toluene (20 mL) was
irradiated at 365 nm, using either an optical bench equipped with a
xenon-mercury lamp and a high-intensity monochromator, or a TLC
lamp (6 W). The photoreduction process was monitored by UV-Visible
spectroscopy.
[1]
[2]
a) Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108,
6405-6406; b) Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56, 3729-
3731; c) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed.
1998, 37, 1415-1418.
For a selection, see: a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-
3211; b) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108,
3351-3378; c) A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864-876;
d) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; e) A. Fürstner, Acc.
Chem. Res. 2014, 47, 925-938; f) M. Joost, A. Amgoune, D. Bourissou,
Angew. Chem. Int. Ed. 2015, 54, 115022-15045.
Thermal reduction: a solution of Ln•AuCl3 complex (n = 1–4, 70 µM) in
dry toluene (10 mL) was placed in a sealed glassware equipped with a
cuvette (l = 1 cm) and a round flask (25 mL). The solution was heated at
different temperatures (25–80°C). The experiment was monitored by
UV-Visible spectroscopy.
[3]
a) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem.
Int. Ed. 2000, 39, 2285-2288; b) A. S. K. Hashmi, T. M. Frost, J. W.
Bats, J. Am. Chem. Soc. 2000, 122, 11553-11554; c) F. Mo, J. M. Yan,
D. Qiu, F. Li, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2010, 49,
2028-2032; d) D. M. Barber, H. Sanganee, D. J. Dixon, Chem.
Commun. 2011, 47, 4379-4381; e) Y. Qiu, W. Kong, C. Fu, S. Ma, Org.
Lett. 2012, 14, 6198-6201.
β–Carbolinone 9: to a solution of 2-amido-indole 8 (17 mg, 44 µmol) in
dichloromethane (2 mL) was added a solution of L1•2AuCl3 catalyst (2.2
µmol, 5 mol%) in dichloromethane (0.5 mL). The reaction was stirred at
room temperature for 40 h. After concentration under vacuum, the
residue was purified by column chromatography on silica gel (eluent:
petrol ether/AcOEt, 1:1). Compound 9 was isolated as a white solid (93 %
yield). m.p. 163.7 °C; FTIR (NaCl): ν 2923, 2854, 2219, 1663, 1590,
[4]
a) E. C. Constable, T. A. Leese, J. Organomet. Chem. 1989, 363, 419-
424; (b) S. K. Hashmi, C. Lothschütz, M. Ackermann, R. Doepp, S.
Anantharaman, B. Marchetti, H. Bertagnolli, F. Rominger, Chem. Eur.
J. 2010, 16, 8012-8019; (c) R. Kumar, A. Linden, C. Nevado, Angew.
Chem. Int. Ed. 2015, 54, 14287-14290.
1331, 738 cm–1 1H NMR (300 MHz, CDCl3) δ 8.18 (d, J = 8.1 Hz, 1H),
;
7.70-7.72 (m, 1H), 7.42-7.58 (m, 5H), 7.27-7.33 (m, 1H), 7.08-7.22 (m,
5H), 6.93 (d, J = 0.88 Hz, 1H), 4.35 (s, 3H), 2.63 (d, J = 0.88 Hz, 3H);
13C NMR (75 MHz, CDCl3) δ 156.0, 142.7, 141.2, 132.9, 131.5, 129.1,
128.6, 128.5, 128.4, 128.2, 126.8, 126.7, 126.5, 125.0, 122.9, 122.8,
122.3, 122.2, 120.2, 111.9, 110.3, 94.7, 85.5, 31.5, 17.0; HRMS (ESI):
m/z calculated for C27H21N2O [M+H]+: 389.1654; found: 389.1638.
[5]
[6]
M. T. Reetz, K. Sommer, Eur. J. Org. Chem. 2003, 3485-3496.
a) B. Ranieri, I. Escofet, A. M. Echavarren. Org. Biomol. Chem. 2015,
13, 7103-7118; b) J. H.Teles, Angew. Chem. Int. Ed. 2015, 54, 5556-
5558.
[7]
a) S. Komiya, T. A. Albright, R. Hoffmann, J. K. Kochi, J. Am. Chem.
Soc. 1976, 98, 7255-7265; b) S. Komiya, J. K. Kochi, J. Am. Chem.
Soc. 1976, 98, 7599-7607; c) J. Vicente, M. D. Bermudez, J.
Escribano, Organometallics 1991, 33, 6358-6368; d) S. Lavy, J. J.
Miller, M. Pazicky, A.-S. Rodrigues, F. Rominger, C. Jakel, D. Serra, N.
Vinokurov, M. Limbach, Adv. Synth. Catal. 2010, 352, 2993-3000; d)
M. Pazicky, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov, F.
Rominger, C. Jäkel, A. S. K. Hashmi, M. Limbach, Organometallics
2010, 29, 4448-4458; e) M. Blaya, D. Bautista, J. Gil-Rubio, J. Vicente,
Organometallics 2014, 10, 3380-3384; f) W. J. Wolf, M. S. Winston, F.
D. Toste, Nat. Chem. 2014, 6, 159-164.
General procedure for one-pot cyclizations: to a solution of 2-amido-
indole 8 (17 mg, 44 µmol) in dichloromethane (2 mL) was added a
solution of gold catalyst (2.2 µmol, 5 mol%) in dichloromethane (0.5 mL).
The reaction was stirred at room temperature for 8 h. Then silver
trifluoromethanesulfonate (1.0 mg, 7 mol%) was added and the reaction
was stirred for 4 hours.
Indolino-4H-benzoquinolizin-4-one 10: following the general
procedure with catalyst L3•2AuCl3, the reaction medium was finally
concentrated under vacuum. The residue was purified by column
chromatography on silica gel (eluent: CH2Cl2/MeOH, 50:1). Compound
10 was isolated as yellow sticky oil (80 % yield): FTIR (NaCl): ν 2925,
2854, 1630, 1525, 1334, 1266, 1030, 756, 637 cm–1; 1H NMR (300 MHz,
CD3CN) δ 8.41 (s, 1H), 8.31 (d, J = 7.95 Hz, 1H), 8.06 (d, J = 8.28 Hz,
1H), 7.96 (d, J = 7.62 Hz, 1H), 7.62-7.82 (m, 5H), 7.40-7.53 (m, 4H),
6.96 (s, 1H), 3.91 (s, 3H), 2.90 (s, 3H); 13C NMR (75 MHz, CD3CN) δ
146.2, 144.6, 141.4, 134.8, 133.3, 132.9, 132.7, 2.1, 131.4, 130.3, 129.6,
129.4, 126.8, 126.1, 125.2, 124.2, 123.9, 123.5, 122.8, 122.2, 121.1,
119.9, 119.6, 112.3, 111.3, 34.0, 17.3; HRMS (ESI): m/z calculated for
C27H21N2O [M+H]+: 389.1654; found: 389.1648.
[8]
a) T. de Haro, C. Nevado, J. Am. Chem. Soc. 2010, 132, 1512-1513;
b) W. E. Brenzovich Jr., D. Benitez, A. D. Lackner, H. P. Shunatona, E.
Tkatchouk, W. A. Goddard III, F. D. Toste, Angew. Chem. Int. Ed.
2010, 49, 5519-5522; c) G. Zhang, L. Cui, Y. Wang, L. Zhang, J. Am.
Chem. Soc. 2010, 132, 1474-1475; d) L. T. Ball, G. C. Lloyd-Jones, C.
A. Russell, Science 2012, 337, 1644-1648; e) W. Wang, J. Jasinski, G.
B. Hammond, B. Xu, Angew. Chem. Int. Ed. 2010, 49, 7247-7252;
a) B. Sahoo, M. N. Hopkinson, F. Glorius, J. Am. Chem. Soc. 2013,
135, 5505-5508; b) M. N. Hopkinson, B. Sahoo, F. Glorius, Adv. Synth.
Catal. 2014, 356, 2794-2800; c) X.-Z. Shu, M. Zhang, Y. He, H. Frei, F.
D. Toste, J. Am. Chem. Soc. 2014, 136, 5844-5847; d) Y. He, H. Wu, ,
F. D. Toste, Chem. Sci. 2015, 6, 1194-4758.
[9]
[10] a) G. Revol, T. McCallum, M. Morin, F. Gagosz, L. Barriault, Angew.
Chem. Int. Ed. 2013, 52, 13342-13345; b) T. McCallum, L. Barriault,
Chem. Sci. 2016, 7, 4754-4758; c) L. Huang, M. Rudolph, F.
Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 4808-
4813; d) L. Huang, F. Rominger, M. Rudolph, A. S. K. Hashmi, Chem.
Commun. 2016, 52, 6435-6438; e) S. Witzel, J. Xie, M. Rudolph, A. S.
K. Hashmi, Adv. Synth. Catal. 2017, 359, 1522-1528.
Acknowledgements
Financial support was provided by the China Scholarship
Council (Z.C. Ph.D. fellowship), the University of Bordeaux and
Centre National de la Recherche Scientifique. Claire Mouche
and Patricia Castel are thanked for mass spectrometry analysis.
[11] T. S. Teets, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 7411-7420.
This article is protected by copyright. All rights reserved.