Scheme 1. One-Pot Synthesis of Luotonin A (1)
Figure 1. Structure of luotonin A (1).
convergent construction of one or two rings (B, C, or D)
from fragment compounds. Thus, further development of
a practical and efficient, preferably one-pot, synthesis of 1
and its derivatives (2a-f and 3a-e) would be of immense
value for SAR study (Figure 2).
By retrosynthetic analysis of 1, a simultaneous construc-
tion of BCD rings by quinazolinone formation (D ring)
and an intramolecular aza-Diels-Alder (BC rings) reac-
tion can in principle be achieved with the highest efficiency.
Since both reactions were known to be catalyzed by Lewis
acids,2,8 we envisaged that a self-directed sequence of
reactions;(i) imine formation, (ii) quinazolinone forma-
tion, (iii) intramolecular aza-Diels-Alder reaction, and
finally (iv) dehydrogenation and (v) aromatization;acti-
vated and catalyzed by metal triflates could concomitantly
form the desired structure 1.
Scheme 1 illustrates our initial success of luotonin A
synthesis of which the BCD rings were assembled from the
appropriate aniline, a propargyl unit, and the glyoxal. The
proposed reaction sequence did concomitantly occur in a
one-step fashion under our experimental conditions. This
total synthesis of 1 started from the commercial, inexpen-
sive isatoic anhydride 4. Upon reacting first with propar-
gylamine in DMF at ambient temperature for 1 h, 4 was
readily converted to a 2-aminobenzamide 5 in nearly
quantitative yield.9 After removing the solvent and exces-
siveamine in vacuo, reflux of this 2-aminobenzamide 5 in o-
xylene with aniline (10 equiv), Yb(OTf)3 (20 mol %), and
40% aqueous glyoxal (15 equiv) for 12 h furnished the
fluorescent product 1 with 35% isolated yield after column
chromatography. The selection of 20 mol % Yb(OTf)3 was
based upon the screening optimization of 11 metal triflates
available in our laboratory (Table S1, Supporting Infor-
mation). This sequence of reactions was remarkably facile,
and because of the air and water stability of the catalyst,
the reaction required no special precautions. Of the metal
triflates investigated, all of them catalyzed the reaction
under the same experimental conditions; however, the
isolated yields (14-26%) from other catalysts were infer-
ior to that with Yb(OTf)3 (Table S1, Supporting Infor-
mation). Albeit In(OTf)3 wasknown tobe a superior Lewis
acid for the hetero Diels-Alder reactions,10 in our hands it
Figure 2. Structures of luotonin A analogues (2a-f) and C-ring
expanded analogues (3a-e).
leukemia P-388 cell line with an IC50 value of 6.3 μM.
Albeit it is not potent enough for cancer chemotheraphy,
luotonin A is nevertheless a lead compound and has been
the subject of a number of total syntheses and bioactivity
investigations.5,6 Many of the syntheses of 1 however
involved lengthy synthetic procedures, harsh experimental
conditions, long reaction hours, and low overall yields.7
Among the syntheses reported, most completed 1 with the
(4) Cagir, A.; Jones, S. H.; Gao, R.; Eisenhauer, B. M.; Hecht, S. M.
J. Am. Chem. Soc. 2003, 125, 13628.
(5) For a recent review on the synthesis and biological activity of
luotonin A and related derivatives, see: Ma, Z.; Hano, Y.; Nomura, T.
Heterocycles 2005, 65, 2203.
(6) Since its discovery in 1997, there have been 74 publications
(SciFinder on January 7, 2011) on the synthesis and biological applica-
tions of luotonin A.
(7) For recent studies of luotonin A syntheses, see: (a) Ju, Y.; Lu, F.,
F.; Li, C. Org. Lett. 2009, 11, 3582. (b) Liang, Y.; Jiang, X.; Yu, Z.-X.
Org. Lett. 2009, 11, 5302. (c) Sridharan, V.; Ribelles, P.; Ramos, M. T.;
Menendez, J. C. J. Org. Chem. 2009, 74, 5715. (d) Nacro, K.; Zha, C.;
Guzzo, P. R.; Herr, R. J.; Peace, D.; Friedrich, T. D. Bioorg. Med. Chem.
2007, 15, 4237. (e) Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem.
2007, 72, 6270. (f) Twin, H.; Batey, R. A. Org. Lett. 2004, 6, 4913.
(g) Mhaske, S. B.; Argade, N. P. J. Org. Chem. 2004, 69, 4563.
(h) Dallavalle, S.; Merlini, L.; Beretta, G. L.; Tinelli, S.; Zunino, F.
Bioorg. Med. Chem. Lett. 2004, 14, 5757. (i) Cagir, A.; Jones, S. H.;
Eisenhauer, B. M.; Gao, R.; Hecht, S. M. Bioorg. Med. Chem. Lett. 2004,
14, 2051. (j) Cagir, A.; Eisenhauer, B. M.; Gao, R.; Thomas, S. J.; Hecht,
S. M. Bioorg. Med. Chem. Lett. 2004, 12, 6287. (k) Chavan, S. P.;
Sivappa, R. Tetrahedron 2004, 60, 9931. (l) Harayama, T.; Hori, A.;
Serban, G.; Morikami, Y.; Matsumoto, T.; Abe, H.; Takeuchi, Y.
Tetrahedron 2004, 60, 10645. (m) Toyota, M.; Komori, C.; Ihara, M.
ARKIVOC 2003, 15. (n) Lee, E. S.; Park, J.-G.; Jahng, Y. Tetrahedron
Lett. 2003, 44, 1883. (o) Osborne, D.; Stevenson, P. J. Tetrahedron Lett.
2002, 43, 5469. (p) Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2002,
43, 1905. (q) Dallavalle, S.; Merlini, L. Tetrahedron Lett. 2002, 43, 1835.
(r) Toyota, M.; Komori, C.; Ihara, M. Heterocycles 2002, 56, 101.
(s) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1999,
51, 1593. (t) Kelly, T. R.; Chamberland, S.; Silva, R. A. Tetrahedron
Lett. 1999, 40, 2723. (u) Wang, H.; Ganesan, A. Tetrahedron Lett. 1998,
39, 9097.
(8) (a) Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. (b) Buonora,
P.; Olsen, J.-C.; Oh, T. Tetrahedron 2001, 57, 6099.
(9) The 2-aminobenzamide 4 intermediate could be isolated in 97%
yield, when needed.
(10) Ali, T.; Chauhan, K. K.; Frost, C. G. Tetrahedron Lett. 1999, 40,
5621.
Org. Lett., Vol. 13, No. 5, 2011
921