Cannabilactones: CB2 SelectiVe Agonists
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 26 6499
(8) Herkenham, M.; Lynn, A. B.; Little, M. D.; Johnson, M. R.; Melvin,
L. S.; de Costa, B. R.; Rice, K. C. Cannabinoid receptor localization
in brain. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1932–1936.
(9) Straiker, A.; Stella, N.; Piomelli, D.; Mackie, K.; Karten, H. J.;
Maguire, G. Cannabinoid CB1 receptors and ligands in vertebrate
retina: Localization and function of an endogenous signaling system.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14565–14570.
(10) Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.;
Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P.
Expression of central and peripheral cannabinoid receptors in human
immune tissues and leukocyte subpopulations. Eur. J. Biochem. 1995,
232, 54–61.
mL. The cell membrane preparations (24–40 µg) were incubated
for 2 h at 30 °C with compounds at 1 µM, 30 µM GDP, and 0.05
nM [35S]GTPγS to a final volume of 250 µL. Nonspecific binding
was assessed in the presence of 10 µM nonradiolabeled GTPγS.
Postincubation, the wells were filtered using GF/B filters (Perkin-
Elmer) and washed. Bound [35S]GTPγS was determined using a
Packard Topcount scintillation counter and results were analyzed
using Prizm software (GraphPad Software, Inc.).
cAMP Assay. The cAMP assay was performed as previously
described.53
CannabinoidMediatedAntinociception.Animals.MaleSprague–
Dawley rats (Harlan, Indianapolis, IN) 200–300 g at time of testing,
were maintained in a climate-controlled room on a 12 h light/dark
cycle (lights on at 06:00 h) and food and water were available ad
libitum. All of the testing was performed in accordance with the
policies and recommendations of the International Association for
the Study of Pain (IASP) and the National Institutes of Health (NIH)
guidelines for the handling and use of laboratory animals and
received approval from the Institutional Animal Care and Use
Committee (IACUC) of the University of Arizona.
In Vivo Drug Administration. All drugs were dissolved in
dimethyl sulfoxide (DMSO) and were injected subcutaneously in
the plantar surface of the hindpaw in a total volume of 50 µL.
DMSO given in hindpaw at this volume had no effect. The method
of Hargreaves et al.59 was employed to assess paw-withdrawal
latency to a thermal nociceptive stimulus. Rats were allowed to
acclimate within a plexiglass enclosure on a clear glass plate
maintained at 30 °C. A radiant heat source (i.e., high intensity
projector lamp) was activated with a timer and focused onto the
plantar surface of the hindpaw. Paw-withdrawal latency was
determined by a photocell that halted both lamp and timer when
the paw was withdrawn. The latency to withdrawal of the paw from
the radiant heat source was determined both before and after drug
or vehicle administration. A maximal cutoff of 40 s was employed
to prevent tissue damage.
(11) Bouaboula, M.; Rinaldi, M.; Carayon, P.; Carillon, C.; Delpech, B.;
Shire, D.; Le Fur, G.; Casellas, P. Cannabinoid-receptor expression
in human leukocytes. Eur. J. Biochem. 1993, 214, 173–180.
(12) Van Sickle, M. D.; Duncan, M.; Kingsley, P. J.; Mouihate, A.; Urbani,
P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison,
J. S.; Marnett, L. J.; Di Marzo, V.; Pittman, Q. J.; Patel, K. D.; Sharkey,
K. A. Identification and functional characterization of brainstem
cannabinoid CB2 receptors. Science 2005, 310, 329–332.
(13) Pacher, P.; Batkai, S.; Kunos, G. The endocannabinoid system as an
emerging target of pharmacotherapy. Pharmacol. ReV. 2006, 58, 389–
462.
(14) Reggio, P. Pharmacophores for ligand recognition and activation/
inactivation of the cannabinoid receptors. Curr. Pharm. Des. 2003, 9,
1607–1633.
(15) Lu, D.; Meng, Z.; Thakur, G. A.; Fan, P.; Steed, J.; Tartal, C. L.;
Hurst, D. P.; Reggio, P. H.; Deschamps, J. R.; Parrish, D. A.; George,
C.; Järbe, T. U. C.; Lamb, R. J.; Makriyannis, A. Adamantyl
cannabinoids: A novel class of cannabinergic ligands. J. Med. Chem.
2005, 48, 4576–4585.
(16) Thakur, G. A.; Nikas, S. P.; Li, C.; Makriyannis, A. Structural
requirements for cannabinoid receptor probes. Handb. Exp. Pharmacol.
2005, 168, 209–246.
(17) Raitio, K. H.; Salo, O. M. H.; Nevalainen, T.; Poso, A.; Järvinen, T.
Targeting the cannabinoid CB2 receptor: Mutations, modeling and
development of CB2 selective ligands. Curr. Med. Chem. 2005, 12,
1217–1237.
(18) Gareau, Y.; Dufresne, C.; Gallant, M.; Rochette, C.; Sawyer, N.;
Slipetz, D. M.; Tremblay, N.; Weech, P. K.; Metters, K. M.; Labelle,
M. Structure-activity relationships of tetrahydrocannabinol analogues
on human cannabinoid receptors. Bioorg. Med. Chem. Lett. 1996, 6,
189–194.
(19) Huffman, J. W.; Yu, S.; Showalter, V.; Abood, M. E.; Wiley, J. L.;
Compton, D. R.; Martin, B. R.; Bramblett, R. D.; Reggio, P. H.
Synthesis and pharmacology of a very potent cannabinoid lacking a
phenolic hydroxyl with high affinity for the CB2 receptor. J. Med.
Chem. 1996, 39, 3875–3877.
(20) Huffman, J. W.; Miller, J. R. A.; Liddle, J.; Yu, S.; Thomas, B. F.;
Wiley, J. L.; Martin, B. R. Structure-activity relationships for 1′,1′-
dimethylalkyl-∆8-tetrahydrocannabinols. Bioorg. Med. Chem. 2003,
11, 1397–1410.
(21) Khanolkar, A. D.; Lu, D.; Fan, P.; Tian, X.; Makriyannis, A. Novel
conformationally restricted tetracyclic analogs of ∆8-tetrahydrocan-
nabinol. Bioorg. Med. Chem. Lett. 1999, 9, 2119–2124.
(22) Hanus, L.; Breuer, A.; Tchilibon, S.; Shiloah, S.; Goldenberg, D.;
Horowitz, M.; Pertwee, R. G.; Ross, R. A.; Mechoulam, R.; Fride, E.
HU-308: A specific agonist for CB2, a peripheral cannabinoid receptor.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14228–14233.
(23) Malan, T. P., Jr.; Ibrahim, M. M.; Deng, H.; Liu, Q.; Mata, H. P.;
Vanderah, T.; Porreca, F.; Makriyannis, A. CB2 cannabinoid receptor-
mediated peripheral antinociception. Pain 2001, 93, 239–245.
(24) Ibrahim, M. M.; Deng, H.; Zvonok, A.; Cockayne, D. A.; Kwan, J.;
Mata, H. P.; Vanderah, T. W.; Lai, J.; Porreca, F.; Makriyannis, A.;
Malan, T. P. Jr. Activation of CB2 cannabinoid receptors by AM1241
inhibits experimental neuropathic pain: Pain inhibition by receptors
not present in the CNS. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
10529–10533.
Acknowledgment. This research work was supported by
Grants DA-7215, DA-3801, DA-152, DA-9158 (Center for Drug
Discovery, Northeastern University), DA-0355 (The University
of Arizona College of Medicine) from the National Institute on
Drug Abuse, and by the Office of Naval Research. We also
thank Joy Erickson for the biochemical assays, Ruoxi Lan who
prepared 9, and Fenmei Yao who prepared 10.
Supporting Information Available: Elemental analyses data
and X-ray diffraction data for 4a and 4b. This material is available
free of charge via the Internet at .
References
(1) Lambert, D. M.; Fowler, C. J. The endocannabinoid system: Drug
targets, lead compounds, and potential therapeutic applications. J. Med.
Chem. 2005, 48, 5059–5087.
(2) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Molecular characterization
of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65.
(3) Shire, D.; Calandra, B.; Rinaldi-Carmona, M.; Oustric, D.; Pessègue,
B.; Bonnin-Cabanne, O.; Le Fur, G.; Caput, D.; Ferrara, P. Molecular
cloning, expression and function of the murine CB2 peripheral
cannabinoid receptor. Biochim. Biophys. Acta 1996, 1307, 132–136.
(25) Hohmann, A. G.; Farthing, J. N.; Zvonok, A. M.; Makriyannis, A.
Selective activation of cannabinoid CB2 receptors suppresses hyper-
algesia evoked by intradermal capsaicin. J. Pharmacol. Exp. Ther.
2004, 308, 446–453.
(4) Gérard, C. M.; Mollereau, C.; Vassart, G.; Parmentier, M. Molecular
cloning of a human cannabinoid receptor which is also expressed in
testis. Biochem. J. 1991, 279, 129–134.
(5) Chakrabarti, A.; Onaivi, E. S.; Chaudhuri, G. Cloning and sequencing
of a cDNA encoding the mouse brain-type cannabinoid receptor
protein. DNA Sequence 1995, 5, 385–388.
(6) Abood, M. E.; Ditto, K. E.; Noel, M. A.; Showalter, V. M.; Tao, Q.
Isolation and expression of a mouse CB1 cannabinoid receptor gene.
Comparison of binding properties with those of native CB1 receptors
in mouse brain and N18TG2 neuroblastoma cells. Biochem. Pharma-
col. 1997, 53, 207–214.
(7) Griffin, G.; Tao, Q.; Abood, M. E. Cloning and pharmacological
characterization of the rat CB2 cannabinoid receptor. J. Pharmacol.
Exp. Ther. 2000, 292, 886–894.
(26) Ibrahim, M. M.; Porreca, F.; Lai, J.; Albrecht, P. J.; Rice, F. L.;
Khodorova, A.; Davar, G.; Makriyannis, A.; Vanderah, T. W.; Mata,
H. P.; Malan, T. P. Jr. CB2 cannabinoid receptor activation produces
antinociception by stimulating peripheral release of endogenous
opioids. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3093–3098.
(27) Ibrahim, M. M.; Rude, M. L.; Stagg, N. J.; Mata, H. P.; Lai, J.;
Vanderah, T. W.; Porreca, F.; Buckley, N. E.; Makriyannis, A.; Malan,
T. P. Jr. CB2 cannabinoid receptor mediation of antinociception. Pain
2006, 122, 36–42.
(28) Huffman, J. W. CB2 receptor ligands. Mini-ReV. Med. Chem. 2005,
5, 641–649.