S. Ruchirawat, T. Mutarapat / Tetrahedron Letters 42 (2001) 1205–1208
1207
(c) Boger, D. L.; Soenen, D. R.; Boyce, C. W.; Hedrick,
M. P.; Jin, Q. J. Org. Chem. 2000, 65, 2479–2483.
7. Lamellarin G trimethyl ether: Heim, A.; Terpin, A.;
Steglich, W. Angew. Chem., Int. Ed. Engl. 1997, 36,
155–156. Lamellarin K: Banwell, M. G.; Flynn, B. L.;
Hockless, D. C. R. Chem. Commun. 1997, 2259–2260.
Lamellarin D and H: Ishibashi, F.; Miyazaki, Y.; Iwao,
M. Tetrahedron 1997, 53, 5951–5962. Banwell, M. G.;
Flynn, B. L.; Hockless, D. C. R.; Longmore, R. W.; Rae,
A. D. Aust. J. Chem. 1998, 52, 755–765. Lamellarin L:
Peschko, C.; Winklhofer, C.; Steglich, W. Chem. Eur. J.
2000, 6, 1147–1152.
Scheme 2. Reagents and conditions: Series a. (i) MeSO2Cl,
Et3N, CH2Cl2 (97%); (ii) BnN+Me3Br3−, CH2Cl2 (2a, 81%):
Series b. (i) MeSO2Cl, Et3N, CH2Cl2 (97%); (ii) BnN+Me3Br3−,
CH2Cl2 (2b, 83%).
8. Lukianol A and lamellarin O dimethyl ether: Fu¨rstner,
A.; Weintritt, H.; Hupperts, A. J. Org. Chem. 1995, 60,
6637–6641. Lamellarin O and Q, lukianol A: Banwell, M.
G.; Flynn, B. L.; Hamel, E.; Hockless, D. C. R. Chem.
After some experimentation, we found that the above
conversion could be conveniently carried out by oxida-
tion with bromobenzene, palladium acetate and
triphenylphosphine using DMF as the solvent and
potassium carbonate as the base in the reaction.12 The
product 7b was formed in 80% yield. The physical and
spectroscopic data of the product 7b are in good agree-
ment with that reported for lamellarin G trimethyl
ether.7 Tetrakis(triphenylphosphine)palladium(0) could
be used in place of palladium acetate and the reaction
proceeded in the same yield. The oxidation of unsubsti-
tuted analogue 5a with the above system also gave the
required lactone 7a in 80% yield.
Commun. 1997, 207–208. Storniamide
A
nona-
methyl ether: Ebel, H.; Terpin, A.; Steglich, W. Tetra-
hedron Lett. 1998, 39, 9165–9166. Polycitrin A: Terpin,
A.; Polborn, K.; Steglich, W. Tetrahedron 1995, 51, 9941–
9946. Lukianol A: Gupton, J. T.; Krumpe, K. E.; Burn-
ham, B. S.; Webb, T. M.; Shuford, J. S.; Sikorski, J. A.
Tetrahedron 1999, 55, 14515–14522. Liu, J.-H.; Yang,
Q.-C.; Mak, T. C. W.; Wong, H. N. C. J. Org. Chem.
2000, 65, 3587–3595. Liu, J.-H.; Chan, H.-W.; Wong, H.
N. C. J. Org. Chem. 2000, 65, 3274–3283. Polycitone B:
Rudi, A.; Evan, T.; Aknin, M.; Kashman, Y. J. Nat.
Prod. 2000, 63, 832–833. Polycitrin B: Beccalli, E. M.;
Clerici, F.; Marchesini, A. Tetrahedron 2000, 56, 2699–
2702.
9. The starting phenacyl bromides 2a and 2b could be
prepared from the acetophenone derivatives 9a and 9b as
shown in Scheme 2. The mesylate protecting group could
be introduced by the reaction of the phenolic compounds
with methanesulfonyl chloride using triethylamine as a
base.13 The bromination of the acetophenone could be
carried out by using an equimolar quantity of benzyl-
trimethylammonium tribromide.14
10. (a) Casagrande, C.; Invernizzi, A.; Ferrini, R.; Ferrari, G.
G. J. Med. Chem. 1968, 11, 765–770; (b) Alberola, A.;
Ortega, A. G.; Sadaba, M. L.; Sanudo, C. Tetrahedron
1999, 55, 6555–6566.
Acknowledgements
We acknowledge the financial contribution from the
Thailand Research Fund (TRF) for the generous sup-
port of the research program. We also acknowledge the
facilities in the Department of Chemistry provided by
the PERCH program.
References
11. (a) Silverstein, R. M.; Ryskiewicz, E. E.; Willard, C.
Organic Synthesis Coll. Vol. IV, pp. 831–833; (b) Majo,
V. J.; Perumal, P. T. J. Org. Chem. 1996, 61, 6523–6525.
12. Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.;
Yoshida, Z. J. Org. Chem. 1983, 48, 1286–1292.
1. Davidson, B. S. Chem. Rev. 1993, 93, 1771–1791.
2. Lamellarins A–D: Anderson, R. J.; Faulkner, D. J.;
Cun-Heng, H.; Van Duyne, G. D.; Clardy, J. J. Am.
Chem. Soc. 1985, 107, 5492–5495.
3. Davis, R. H.; Carroll, A. R.; Pierens, G. K.; Quinn, R. J.
J. Nat. Prod. 1999, 62, 419–424 and references cited
therein.
4. Biological activities: Lamellarins I–N: Carroll, A. R.;
Bowden, B. F.; Coll, J. C. Aust. J. Chem. 1993, 46,
489–501. Lamellarins T–X: Reddy, R. M. V.; Faulkner,
D. J.; Venkateswarlu, Y.; Rao, M. R. Tetrahedron 1997,
53, 3457–3466.
5. Reddy, R. M. V.; Rao, M. R.; Rhodes, D.; Hansen, M.
S. T.; Rubins, K.; Bushmen, F. D.; Venkateswarlu, Y.;
Faulkner, D. J. J. Med. Chem. 1999, 42, 1901–1907.
6. (a) Quesada, A. R.; Garcia Gravalos, M. D.; Fernandez
Puentes, J. L. Br. J. Cancer 1996, 74, 677–682; PCT int.
Appl., WO 9701336 A1 970116 (Chem. Abstr. 1996, 126,
166474); (b) Boger, D. L.; Boyce, C. W.; Labroli, M. A.;
Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54–62;
13. Bates, R. W.; Rama-Davi, T. Synlett 1995, 1151–1152.
14. Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S.
Bull. Chem. Soc. Jpn. 1987, 60, 1159–1160. All com-
pounds have been fully characterized. Spectroscopic data
of some selected compounds. 2-(3%%,4%%-Dimethoxy-2%%-me-
syloxyphenyl)-1-(3%,4%-dimethoxyphenyl)-8,9-dimethoxy-
5,6-dihydropyrrolo[2,1-a]isoquinoline (3b) mp (MeOH):
186–187°C; FTIR (CHCl3): wmax 3027, 2938, 2839, 1539,
1465, 1365, 1259, 1205 cm−1 1H NMR (300 MHz,
;
CDCl3): l 2.86 (s, 3H, OSO2CH3), 3.08 (t, 2H, J=6.5
Hz, CH2CH2N), 4.13 (t, 2H, J=6.5 Hz, CH2CH2N),
3.41, 3.48, 3.72, 3.88, 3.89, 3.90 (6s, 18H, C-9, C-21, C-8,
C-13, C-20 and C-14, 6×OCH3), 6.53 (s, 1H, C-10ArH),
6.72 (s, 1H, C-7ArH), 6.74 (s, 1H, C-19ArH), 6.82 (dd,
1H, J=8.0 and 1.6 Hz, C-16ArH), 6.84 (d, 1H, J=8.0
Hz, C-15ArH), 6.87 (d, 1H, J=1.6 Hz, C-12ArH), 6.89