G. Castelot-Deliencourt et al. / Tetrahedron Letters 42 (2001) 1025–1028
1027
Acknowledgements
ing secondary amides by treatment with MsCl and Et3N.
When used with our described conditions, these products
led to Michael adducts in very low yields. Using LDA
instead of NaH allowed us to obtain satisfactory yields
(55–60%), but only moderate d.e. (80%).
We gratefully acknowledge the RINCOF and Re´gion
Haute Normandie for financial support (G.C.-D.).
To evaluate the scope of the reaction, we then studied
the influence of the double bond substituent on the
diastereoselectivity. Unsaturated amides derived from
(R)-N-benzylphenylglycinol were prepared by condensa-
tion with the corresponding acyl chlorides. The results of
Michael addition are given in Table 3. Chemical yields
were independent of the substituents (52–55%) unlike
diastereoselectivity, which was highly dependent on elec-
tronic nature of the substituent R (entry 3). Indeed, we
observed that when R is an alkyl group, the diastereose-
lectivity is always higher than 90%, but when we changed
R to a phenyl, the diastereoselectivity dropped to 45%.
References
1. Frank, A. W. Crit. Rev. Biochem. 1984, 16, 51.
2. Bird, J.; Mello, R. C. D.; Harper, G. P.; Hunter, D. J.;
Karran, E. H.; Markwell, R. E. J.; Miles-Williams, A.;
Rahman, S. S.; Ward, R. W. J. Med. Chem. 1994, 37,
158.
3. Cull-Candy, S. G.; Dannelan, J. F.; James, R. W.; Lunt,
G. G. Nature 1976, 408.
4. Hemmi, K.; Takeno, H.; Hashimoto, M.; Kamiya, T.
Chem. Pharm. Bull. 1982, 30, 111.
5. Jane, D. E.; Jones, P. L. St. J.; Pook, P. C. K.; Tse, H.
W.; Watkins, J. C. Br. J. Pharmacol. 1994, 112, 809.
6. Kerr, D. I. B.; Ong, J.; Prager, R. H.; Gynther, B. D.;
Curtis, D. R. Brain Res. 1987, 405, 150.
7. (a) Zeiss, H. J. J. Org. Chem. 1991, 56, 1783; (b) Zeiss, H.
J. Pestic. Sci. 1994, 41, 269.
8. (a) Horiguchi, M.; Kandatsu, M. Nature 1959, 184, 901;
(b) Park, B. K.; Hirota, A.; Sakai, H. Agric. Biol. Chem.
1977, 41, 161.
9. (a) Edmundson, R. S. Dictionary of Organophosphorus
Compounds; Chapman and Hall: London, 1988; (b)
Maury, C.; Gharbaoui, T.; Royer, J.; Husson, H. P. J.
Org. Chem. 1996, 61, 3687; (c) Hanessian, S.; Cantin, L.
D.; Roy, S.; Andreotti, D.; Gomtsyan, A. Tetrahedron
Lett. 1997, 38, 1103; (d) Nobuto, M.; Hirayama, M.;
Fukatsu, S. Tetrahedron Lett. 1984, 25, 1147; (e) Blazis,
V. J.; Koeller, K. J.; Spilling, C. D. J. Org. Chem. 1995,
60, 931; (f) Dhawan, B.; Redmore, D. Phosphorus Sulfur
1987, 32, 119.
10. (a) Froestl, W.; Mickel, S. J.; von Sprecher, G.; Diel, P.
J.; Hall, R. G.; Maier, L.; Strub, D.; Melillo, V.; Bau-
mann, P. A.; Bernasconi, R.; Gentsch, C.; Hauser, K.;
Jaekel, J.; Kerlsson, G.; Klebs, K.; Maitre, L.;
Marescaux, C.; Pozza, M. F.; Schmutz, M.; Steinmann,
M. W.; van Riezen, H.; Vassout, A.; Mondadori, C.;
Olpe, H.-R.; Waldmeier, P. C.; Bittiger, H. J. Med.
Chem. 1995, 38, 3313; (b) Dellaria, Jr., J. F.; Maki, R. G.
Tetrahedron Lett. 1986, 27, 2337; (c) Winsel, H.; Gaz-
izova, V.; Kulinkovich, O.; Pavlov, V.; de Mejeire, A.
Synlett 1999, 1999.
NMR studies did not allow the determination of the
configuration of the newly-created asymmetric center.
This problem was solved by an X-ray analysis of deriva-
tive 3.17 The relative configuration is opposite to the one
observed by Mukaiyama and Brown16 indicating a differ-
ent mechanism for the conjugate addition. Currently, we
favor a chelated process in which the nitrogen substituent
induces steric hindrance in the vicinity of the double
bond.
H
N
OH
(EtO)2P
O
Ph
O
3
In conclusion, an asymmetric synthesis of substituted
amidophosphonates has been developed. Our strategy
allows the preparation of a large variety of functionalized
derivatives. Particularly attractive is the possibility of
gaining access to new g-aminophosphonic acids in enan-
tiomerically pure form. Such an application and new
experiments to clarify the mechanism are in progress and
will be reported in due course.
Table 3. Diastereoselective 1,4-addition of diethyl phos-
phite to amides 1j–l: influence of the b substituent
OH
OH
Ph
O
Ph
HPO(OEt)2 (2 eq.)
R
N
R
N
11. Pudovik, A. N.; Kanavolova, I. V. Synthesis 1979, 81.
12. Barycki, J.; Mastalerz, P.; Soroka, M. Tetrahedron Lett.
1970, 3147.
NaH (2 eq.)
Ph
(EtO)2P
O
Ph
O
2j
2k
2l
13. Gro¨ger, H.; Wilken, J.; Martens, J. Z. Naturforsch., Teil
B 1996, 51, 1305.
1j : R=Et
1k : R=iPr
1l : R=Ph
14. (a) Meyers, A. I.; Whitten, C. E. J. Am. Chem. Soc. 1975,
97, 6266; (b) Meyers, A. I.; Whitten, C. E.; Smith, R. K.
J. Org. Chem. 1979, 44, 2250; (c) Meyers, A. I.; Shipman,
M. J. Org. Chem. 1991, 56, 7098; (d) Bernardi, A.;
Cardani, S.; Pilati, T.; Poli, G.; Scolastico, C.; Villa, R. J.
Org. Chem. 1988, 53, 1600.
Entry
Amide
Product (yield %)
% D.e.a
1
2
3
1j
1k
1l
2j (52)
2k (55)
2l (55)
>95
90
45
15. Andersson, P. G.; Schnik, H. E.; Osterlund, K. J. Org.
Chem. 1998, 63, 8067.
a Measured on the crude product by 31P NMR or by HPLC.