2438
J. Am. Chem. Soc. 2001, 123, 2438-2439
Organic-Inorganic Composites Comprised of
Ordered Stacks of Amphiphilic Molecular Disks
Mutsumi Kimura,*,† Kazumi Wada,† Kazuchika Ohta,†
Kenji Hanabusa,† Hirofusa Shirai,*,† and Nagao Kobayashi‡
Department of Functional Polymer Science
Faculty of Textile Science and Technology
Shinshu UniVersity, Ueda 386-8567, Japan
Department of Chemistry, Graduate School of Science
Tohoku UniVersity, Sendai 980-8587, Japan
Figure 1. Absorption spectra of CuPc(C10EO3)8 in CH2Cl2 and CH2Cl2-
ethanol of ratio of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1. [CuPc-
(C10EO3)8] ) 11.2 µM.
ReceiVed NoVember 21, 2000
solvents and the heating of these ordered stacks leads to
dissociation into single building units. Herein we describe the
preservation of columnar morphology by the deposition of
inorganic walls. Furthermore, wrapping by inorganic wall may
result in the isolation of a single column consisting of one-
dimensional ordered stacking of numerous molecular disks.
Since the discovery of mesoporous MCM-41 having a hex-
agonally ordered structure,1 manipulation of inorganic superstruc-
tures under a template effect of organic supramolecular aggregates
has been a highly active area of research.2 Sol-gel polymerization
of inorganic precursors at the surface of aggregates (templates)
allowed the creation of highly ordered organic-inorganic com-
posites by exploiting noncovalent interactions such as electrostatic,
hydrogen-bonding, and van der Waals interaction. The deposition
of inorganic walls around organic aggregates also preserved the
morphologies of flexible organic supramolecular structures.3
π-Conjugated disklike molecules such as triphenylene and
metallophthalocyanine are attractive building units for the forma-
tion of highly ordered columnar stacks.4 These ordered stacks
might enable an efficient electron or energy transport parallel to
the columnar axis. To obtain ordered stacks of disklike molecules,
a number of chemical and physical techniques involving liquid
crystal, vacuum deposition, and Langmuir-Blodgett film transfer
have been investigated.5 Nolte et al. reported the spontaneous
formation of ordered stacks of phthalocyanine derivatives through
three noncovalent interactions: core-core interaction, van der
Waals interaction among aliphatic side chains, and the sandwich-
type complex formation between crown ether voids and K+ ion.6
Recently, we reported the formation of fibrous assemblies made
of amphiphilic metallophthalocyanines stabilized by hydrogen
bonding among hydroxy groups.7 However, the dissolution in
† Shinshu University.
Novel amphiphilic disklike molecule CuPc(C10EO3)8 was
synthesized according to the conventional method developed for
octaalkoxyphthalocyanines (see Supporting Information). These
compounds contain a central phthalocyanine core, eight decoxy
spacers, and peripheral eight triethylene glycol chains. The
nonionic surfactants and block polymers containing oligo- and
poly(ethylene glycol) headgroups have been widely used as
templates for the preparation of mesoporous silica.8 The introduc-
tion of triethylene glycol chains into the disklike molecules can
induce the assembly of inorganic sources. The synthesized
phthalocyanine derivatives exhibited excellent solubility in polar
and nonpolar solvents except for hydrocarbons. Figure 1 shows
the UV-vis spectra of CuPc(C10EO3)8 in CH2Cl2 and a mixture
of CH2Cl2 and ethanol. UV-vis spectrum in CH2Cl2 had a strong
sharp peak at 677 nm, typical of nonaggregated phthalocyanine.9
When ethanol was admixed, the Q-band was broadened, and the
maximum was blue shifted. These spectral changes can be
ascribed to the formation of phthalocyanine stacks having a
coafacial arrangement. By increasing polarity of solvent, the
‡ Tohoku University.
(1) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S. Nature 1992, 359, 710.
(2) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem., Int. Ed. 1999,
38, 56 and related references therein.
(3) (a) Jung, J. H.; Ono, Y.; Hanabusa, K.; Shinkai, S. J. Am. Chem. Soc.
2000, 122, 5008. (b) Jung, J. H.; Ono, Y.; Sakurai, K.; Sano, M.; Shinkai, S.
J. Am. Chem. Soc. 2000, 122, 8648.
(4) (a) Reichert, A.; Ringsdolf, H.; Schuhmacher, P.; Baumeister, W.;
Scheybani, T. In ConprehensiVe Supramolecular Chemistry; Atwood, J. L.,
Davies, J. E. D., MacNicol, D. D., Vo¨gtle, F., Eds.; Pergamon: Elmsford,
NY, 1996; Vol. 9, p 313. (b) Drechsler, U.; Hanack, M. In ConprehensiVe
Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D.
D., Vo¨gtle, F., Eds.; Pergamon: Elmsford, NY, 1996; Vol. 9, p 283. (c) Simon,
J.; Toupance, T. In ConprehensiVe Supramolecular Chemistry; Atwood, J.
L., Davies, J. E. D., MacNicol, D. D., Vo¨gtle, F., Eds.; Pergamon: Elmsford,
NY, 1996; Vol. 10, p 637. (d) van Nostrum, C. F.; Nolte, R. J. M. Chem.
Commun. 1996, 2385.
(5) (a) Piechochi, C.; Simon, J.; Skoulios, A.; Guillon, D.; Weber, P. J.
Am. Chem. Soc. 1982, 104, 5245. (b) Snow, A. W.; Barger, W. R.
Phthalocyanines Properties and Applications; Leznoff, C. C., Lever, A. B.
P., Eds.; VCH: New York, 1989; Vol. 1, p 343. (c) van Nostrum, C. F.;
Bosman, A. W.; Gelinck, G. H.; Schouten, P. G.; Warman, J. M.; Kentgens,
A. P. M.; Devillers, M. A. C.; Meijerink, A.; Picken, S. J.; Sohling, U.;
Schouten, A.-J.; Nolte, J. M. Chem. Eur. J. 1995, 1, 171. (d) Fox, J. M.;
Katz, T. J.; Van Elshocht, S.; Verbiest, T.; Kauranen, M.; Persoons, A.;
Thongpanchang, T.; Krauss, T.; Brus, L. J. Am. Chem. Soc. 1999, 121, 3453.
(e) Smolenyak, P.; Peterson, R.; Nebesny, K.; To¨rkerm, M.; O’Brien, D. F.;
Armstrong, N. R. J. Am. Chem. Soc. 1999, 121, 8628.
(8) (a) Bagshaw, S. A.; Prouzet, W.; Pinnavaia, T. J. Science 1995, 269,
1242. (b) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. (c) Yang, P.; Zhao,
D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.
(d) Feng, P.; Bu, X.; Stucky, G. D.; Pine, D. J. J. Am. Chem. Soc. 2000, 122,
994.
(9) Stillman, M. J.; Nyokong, T. In Phthalocyanines Properties and
Applications; Leznoff, C. C., Lever, A. B. P., Eds.; VCH: New York, 1989;
Vol. 1, p 135.
(6) (a) van. Nostrum, C. F.; Picken, S. J.; Schouten, A.-J.; Nolte, R. J. M.
J. Am. Chem. Soc. 1995, 117, 9957. (b) Engelkamp, H.; Middelbeek, Nolte,
R. J. M. Science 1999, 284, 785.
(7) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa,
K.; Shirai, H.; Kobayashi, N. Langmuir 2000, 16, 2078.
10.1021/ja004034i CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/16/2001