Page 5 of 6
ACS Medicinal Chemistry Letters
butyric acid, valproic acid and 4ꢀphenylbutyric acid and measured
in” function. Eur. J. Med. Chem., 2014, 82, 314–323.
with carbonꢀ11 labeled analogs by PET. Nucl. Med. Biol., 2013,
40, 912–918.
(30) Wang, X.; Qi, B.; Su, H.; Li, J.; Sun, X.; He, Q.; Fu, Y.;
Zhang, Z. Pyrilamineꢀsensitive protonꢀcoupled organic cation
(H+/OC) antiporter for brainꢀspecific drug delivery. J. Control.
Release, 2017, 254, 34–43.
(31) Kurosawa, T.; Higuchi, K.; Okura, T.; Kobayashi, K.; Kusuꢀ
hara, H.; Deguchi, Y. Involvement of protonꢀcoupled organic
cation antiporter in varenicline transport at bloodꢀbrain barrier of
rats and in human brain capillary Endothelial Cells. J. Pharm.
Sci., 2017, 106, 2576–2582.
(32) Kitamura, A.; Higuchi, K.; Okura, T.; Deguchi, Y. Cocktailꢀ
dosing microdialysis study to simultaneously assess delivery of
multiple organicꢀcationic drugs to the brain. J. Pharm. Sci., 2016,
105, 935–940.
(33) Yamazaki, M.; Terasaki, T.; Yoshioka, K.; Nagata, O.; Kato,
H.; Ito, Y.; Tsuji, A. Carrierꢀmediated transport of H1ꢀantagonist at
the bloodꢀbrain barrier: Mepyramine uptake into bovine brain
capillary endothelial cells in primary monolayer cultures. Pharm.
Res., 1994, 11, 975–978.
(34) Shimomura, K.; Okura, T.; Kato, S.; Couraud, P. O.; Scherꢀ
mann, J. M.; Terasaki, T.; Deguchi, Y. Functional expression of a
protonꢀcoupled organic cation (H+/OC) antiporter in human brain.
Fluids and Barriers of CNS., 2013, 10, 1–10.
(35) Newbold, A.; Matthews, G. M.; Bots, M.; Cluse, L. A.;
Clarke, C. J. P.; Banks, K. M.; Cullinane, C.; Bolden, J. E.; Chrisꢀ
tiansen, A. J.; Dickins, R. A.; Miccolo, C.; Chiocca, S.; Kral, A.
M.; Ozerova, N. D.; Miller, T. A.; Methot, J. L.; Richon, V. M.;
Secrist, J. P.; Minucci, S.; Johnstone, R. W. Molecular and biologꢀ
ic analysis of histone deacetylase inhibitors with diverse specificiꢀ
ties. Mol. Cancer Ther. 2013, 12(12), 2709–2721.
(36) Rankovic, Z. CNS physicochemical property space shaped
by a diverse set of molecules with experimentally determined
exposure in the mouse brain. J. Med. Chem., 2017, 60, 5943–5954.
(37) Chou, C. J.; Herman, D.; Gottesfeld, J. M.; Pimelic diphenylaꢀ
mide 106 is a slow, tightꢀbinding inhibitor of class I histone deacetyꢀ
lases. J. Biol. Chem., 2008, 283, 35402–35409.
(38) Okura, T.; Hattori, A.; Takano, Y.; Sato, T.; Hammarlundꢀ
Udenaes, M.; Terasaki, T.; Deguchi Y. Involvement of the
pyrilamine transporter, a putative organic cation transporter, in
bloodꢀbrain barrier transport of oxycodone. Drug Metab. Dispos.
2008, 36, 2005–2013.
(39) Higuchi, K.; Kitamura, A.; Okura, T.; Deguchi, Y. Memanꢀ
tine transport by a protonꢀcoupled organic cation antiporter in
hCMEC/D3 cells, an in vitro human bloodꢀbrain barrier model.
Drug Metab. Pharmacokinet., 2015, 30, 182–187.
(40) Chapy, H.; Andre, P.; Decleves, X.; Scherrmann, J. M.;
Cisternino, S. A. polyspecific drug/proton antiporter mediates
diphenhydramine and clonidine transport at the mouse bloodꢀ
brain barrier. Br. J. Pharmacol., 2015, 172, 4714–4725.
(41) Uchida, Y.; Ohtsuki, S.; Katsukura, Y.; Ideda, C.; Suzuki, T.;
Kamiie, J.; Terasaki, T. Quantitative targeted absolute proteomics
of human bloodꢀbrain barrier transporters and receptors. J. Neuro-
chem, 2011, 117, 335–345.
(42) Hamblett, C. L.; Methot, J. L.; Mampreian, D. M.; Sloman, D.
L.; Stanton, M. G.; Kral, A. M.; Fleming, J. C.; Cruz, J. C.;
Chenard, M.; Ozerova, N.; Hitz, A. M.; Wang, H.; Deshmukh, S.
V.; Nazef, N.; Harsch, A.; Hughes, B.; Dahlberg, W. K.; Szewczak,
A. A; Middleton, R. E.; Mosley, R. T.; Secrist, J. P.; Millera, T. A.
The discovery of 6ꢀamino nicotinamides as potent and selective
histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17,
5300–5309.
1
2
3
4
5
6
7
8
(19) Seo, Y. J.; Muench, L.; Reid, A.; Chen, J.; Kang, Y.; Hooker,
J. M.; Volkow, N. D.; Fowler, J. S.; Kim, S. W. Radionuclide laꢀ
beling and evaluation of candidate radioligands for PET imaging
of histone deacetylase in the brain. Bioorg. Med. Chem. Lett.,
2013, 23, 6700–6705.
(20) Strebl, M. G.; Campbell, A. J.; Zhao. N. W.; Schroeder, F. A.;
Riley, M. M.; Chindavong, P. S.; Morin, T. M.; Haggarty, S. J.;
Wagner, F. F.; Ritter, T.; Hooker, J. M. HDAC6 brain mapping
with [18F]bavarostat enabled by a Ruꢀmediated deoxyfluorination.
ACS Cent. Sci., 2017, 3, 1006–1014.
(21) Wang, C.; Schroeder, A; Wey, H. Y.; Borra, R.; Wagner, F. F.;
Reis, S.; Kim, W. S.; Holson, B. E.; Haggarty, J. S.; Hooker, M. J.
In vivo imaging of histone deacetylases (HDACs) in the central
nervous system and major peripheral organs. J. Med. Chem., 2014,
57, 7999–8009.
(22) Reid, A. E.; Hooker, J.; Shumay, E.; Logan, J.; Shea, C.; Kim,
S. W.; Collins, S.; Xu, Y.; Volkow, N.; Fowler, J. S. Evaluation of
6ꢀ([18F]fluoroacetamido)ꢀ1ꢀhexanoicanilide for PET imaging of
histone deacetylase in the baboon brain. Nucl. Med. Biol., 2009,
36, 247–258.
(23) Wang. C.; Eessalu, T. E.; Barth, V. N.; Mitch, C. H.; Wagner,
F. F.; Hong, Y.; Neelamegam, R.; Schroeder, F. A.; Holson, E. B.;
Haggarty, S. J.; Hooker, J. M. Design, synthesis, and evaluation of
hydroxamic acidꢀbased molecular probes for in vivo imaging of
histone deacetylase (HDAC) in brain. Am. J. Nucl. Med. Mol.
Imaging, 2014, 4, 29–38.
(24) Schroeder, F. A.; Wang, S.; Van de Bittner, G. C.;
Neelamegam, R.; Takakura, W. R.; Karunakaran, A.; Wey, H. Y.;
Reis, S. A.; Gale, J.; Zhang, Y. L.; Holson E. B.; Haggarty, S. J.;
Hooker, J. M. PET imaging demonstrates histone deacetylase
target engagement and clarifies brain penetrance of known and
novel small molecule inhibitors in rat. ACS Chem. Neurosci.,
2014, 5, 1055–1062.
(25) Seo, Y. J.; Kang, Y.; Muench, L.; Reid, A.; Caesar, S.; Jean,
L.; Wagner, F.; Holson, E.; Haggarty, S. J.; Weiss, P.; King. P.;
Carter, P.; Volkow, N. D.; Fowler, J. S.; Hooker, J. M.; Kim. W. S.
Imageꢀguided synthesis reveals potent bloodꢀbrain barrier permeꢀ
able histone deacetylase inhibitors. ACS Chem. Neurosci., 2014, 5,
588–596.
(26) Di, L.; Rong, H.; Feng, B. Demystifying brain penetration in
central nervous system drug discovery. J, Med. Chem., 2013, 56,
2–12.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(27) (a) Bilsky, E. J.; Egleton, R. D.; Mitchell, S. A.; Palian, M.
M.; Davis, P.; Huber, J. D.; Jones, H.; Yamamura, H. I.; Janders,
J.; Davis, T. P.; Porreca, F.; Hruby, V. J.; Polt, R. Enkephalin glyꢀ
copeptide analogues produce analgesia with reduced dependence
liability. J. Med. Chem., 2000, 43, 2586–2590. (b) Gynther, M.;
Ropponen, J.; Laine, K.; Leppänen, J.; Haapakoski, P.; Peura, L.;
Järvinen, T.; Rautio, J. Glucose promoiety enables glucose transꢀ
porter mediated brain uptake of ketoprofen and indomethacin
prodrugs in rats. J. Med. Chem., 2009, 52, 3348–3353.
(28) Peura, L.; Malmioja, K.; Huttunen, K.; Leppänen, J.; Hämäꢀ
läinen, M.; Forsberg, M. M.; Rautio, J.; Laine, K. Design, syntheꢀ
sis and brain uptake of LAT1ꢀtargeted amino acid prodrugs of
dopamine. Pharm. Res., 2013, 30, 2523–2537.
(29) Zhao, Y.; Qu, B.; Wu, X.; Li, X.; Liu, O.; Jin, X.; Guo, L.;
Hai. L.; Wu, Y. Design, synthesis and biological evaluation of
brain targeting Lꢀascorbic acid prodrugs of ibuprofen with “lockꢀ
ACS Paragon Plus Environment