S. Ito et al. / Tetrahedron Letters 47 (2006) 8563–8566
8565
Acknowledgments
(R): 28.76 min
We wish to thank Professor Dr. Hidemitsu Uno (Divi-
sion of Synthesis and Analysis, Department of Mole-
cular Science, Integrated Center for Sciences, Ehime
University) for carrying out the X-ray single crystal
analysis (for 2b), and Dr. Michinori Karikomi (Depart-
ment of Applied Chemistry, Faculty of Engineering,
Utsunomiya University) for carrying out the CD
measurement.
Δε
References and notes
(S): 17.72 min
1. In Host–Guest Complex Chemistry I, II, and III; Voegtle,
F., Ed.; Springer-Verlag-VCH: Berlin, 1981 (I), 1982 (II),
1984 (III); In Inclusion Compounds Vols. 1–5; Atwood, J.
L.; Davies, J. E. D.; MacNicol, D. D., Eds.; Academic
Press: London, 1984 (Vols. 1–3); 1991 (Vols. 4–5).
2. Pirkle, W. H.; Finn, J. M.; Schreiner, J. L.; Hamper, B. C.
J. Am. Chem. Soc. 1981, 103, 3964; Pirkle, W. H.;
Schreiner, J. L. J. Org. Chem. 1981, 46, 4988.
3. Koenig, K. E.; Helgeson, R. C.; Cram, D. J. J. Am. Chem.
Soc. 1976, 98, 4018; Helgeson, R. C.; Tarnowski, T. L.;
Cram, D. J. J. Org. Chem. 1979, 44, 2538.
4. Stock, H. T.; Kellogg, R. M. J. Org. Chem. 1996, 61, 3093.
5. Naher, S.; Hiratani, K.; Karikomi, M.; Haga, K. J.
Heterocycl. Chem. 2005, 42, 575; Hiratani, K.; Sakamoto,
N.; Kameta, N.; Karikomi, M.; Nagawa, Y. Chem.
Commun. 2004, 1474.
250
300
350
400 (nm)
Figure 2. CD spectra of (R)-1a and (S)-1a.
the macrocycles (O10–H–O16, O7–H–O16, and O11–
H–O16 in Fig. 3: dotted lines). The cavity of macro-
cycles 1 and 2 was reduced by intramolecular hydrogen
bonding (C65–H–O4 in Fig. 3: wavy line).13 These
resemble the crystal structures of macrocycles with a
1,10-binaphthalene-2,20-diol unit reported by Cram and
coworkers.3
In summary, we have developed a novel synthesis of
macrocycles with a 1,10-binaphthalene-2,20-diol unit by
using intramolecular oxidative coupling reaction. These
macrocycles will also be converted to novel asymmetric
catalysts or chiral supramolecules. We are now explor-
ing the chiral recognition ability of macrocycles 1 and
2 as well as the synthesis of novel chiral supramolecules
such as rotaxanes and catenanes.14
6. Yoshida, H.; Kobayashi, Y.; Hiratani, K.; Saigo, K.
Tetrahedron Lett. 2005, 46, 3901, and references are
herein.
7. Bhushan, S.; Vijayakumaran, K. Acros Org. Acta 2003,
10; Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.;
Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem.,
Int. Ed. 2005, 44, 5384.
8. Macrocycle Synthesis, A Practical Approach; Parker, D.,
Ed.; Oxford University Press: Oxford, 1996.
9. Hiratani, K.; Kasuga, K.; Goto, M.; Uzawa, H. J. Am.
Chem. Soc. 1997, 119, 12677; Hiratani, K.; Uzawa, H.;
Kasuga, K.; Kambayashi, H. Tetrahedron Lett. 1997, 38,
8993.
10. Typical procedure of macrocycle 1a: A solution of 6a
(1.75 g, 3.07 mmol) and CuCl(OH)–TMEDA (68.5 mg,
0.30 mmol) in CHCl3 (500 ml) was stirred for one day at
room temperature under air. The reaction mixture was
washed with water (· 3) and brine (· 1). The organic phase
was dried with anhydrous Na2SO4 and evaporated to
dryness on a rotary evaporator. After evaporation, mac-
rocycle 1a was purified by column chromatography (silica
gel) using CHCl3/EtOH (93:7) as eluent. It was then
crystallized from acetonitrile (0.494 g, 28%) as white
plates.
11. Selected spectra data for 6a: colorless paste; 1H NMR
(CDCl3): d 8.51 (s, 2H), 7.60 (m, 4H), 7.28–7.20 (m, 6H),
7.04 (s, 2H), 6.91–6.64 (m, 4H), 4.30 (m, 4H), 4.18 (m,
4H), 4.11 (m, 4H), and 4.04 (m, 4H); 13C NMR (CDCl3): d
148.1, 147.2, 146.7, 130.0, 128.7, 126.4, 124.1, 123.4, 121.3,
112.8, 110.0, 107.0, 69.4, 69.3, 67.8, and 67.8; MS
(MALDI-TOF) m/z 571 (M+H+). Anal. Calcd for
C34H34O8: C, 71.56; H, 6.01. Found: C, 71.18; H, 6.23.
Compound 1a: white crystals: mp = 146–148 ꢁC; 1H
NMR (CDCl3): d 7.71 (d, 2H), 7.43 (br s, 2H, OH), 7.41
(s, 2H), 7.28 (m, 2H), 7.15 (m, 4H), 6.87 (m, 4H), 4.50–
4.37 (m, 4H), 4.20–4.10 (m, 4H), and 4.02–3.73 (m, 8H);
13C NMR (CDCl3) d 147.9, 146.1, 146.0, 130.4, 128.7,
Figure 3. ORTEP diagram of macrocycle 1a with crystallographic
numbering system.