Iron-Catalyzed Cross-Coupling Reactions
A R T I C L E S
complexes as the catalysts.14 They are distinguished by their
wide scope and excellent compatibility with many functional
groups and allow for the reliable transfer of stereochemical
information from the substrates to the products. This profile
usually overcompensates the disadvantages resulting from the
high cost of the palladium precursors, from the need for ancillary
ligands rendering the catalysts sufficiently reactive, from
concerns about the toxicity of nickel salts, and from the extended
reaction times, which are necessary in many cases.
The best substrates for palladium- and nickel-catalyzed cross-
coupling reactions are aryl (alkenyl) iodides, bromides, and
triflates. Only recently have special ligands been designed that
allowed for the scope of these methods to extend to aryl
chlorides, which are the most attractive starting materials due
to their low cost and ready accessibility on a large scale.15,16
Some of these ligands, however, are expensive and/or sensitive
to oxygen and moisture. In view of the foregoing, there remains
ample opportunity to improve upon existing cross-coupling
methodology. In the following, we summarize our investigations
aiming at the development of an alternative strategy based on
the use of iron salts as simple yet highly effective substitutes
for established palladium and nickel catalysts.17 They are not
only very cheap and toxicologically benign, account for short
reaction times even if the cross-coupling reactions are carried
out at or below room temperature, but also allow for activation
of a host of aryl chlorides, triflates, and even tosylates under
“ligand free” conditions.
preceded by publications of Kochi et al., who proposed the use
of iron salts for similar purposes.20 Surprisingly though, the iron-
based methodology attracted much less attention and remained
essentially limited to cross-couplings of Grignard or orga-
nomanganese reagents with alkenyl halides,21 alkenyl sulfones,22
acid chlorides or thiolesters,23 and allylic phosphates;24,25
thereby, the contributions of Cahiez deserve particular mention-
ing, which include demonstrating the generality of the iron-
catalyzed vinylation process and first recognizing the advantages
associated with the use of NMP as a cosolvent.21a-c Successful
applications to aryl halides as substrates, however, have not been
reported.26 Moreover, the mechanism of the iron-catalyzed cross-
coupling remained rather obscure, whereas detailed insights into
most of the prominent palladium- and nickel-catalyzed manifolds
have been gained over the years.1,14,27 It has been speculated
that Fe(0) or Fe(+I) species constitute the catalytically relevant
intermediates, although no secured information as to their
structure or mode of action could be obtained.20,28 Alternatively,
“super-ate” complexes of Fe(+II) have been suggested as the
active species.29
Recent advancements in the field of “inorganic Grignard
reagents”,30 however, render these hypotheses highly unlikely
and call for a re-evaluation of iron-catalyzed cross-coupling
(18) (a) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972,
144. (b) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972,
94, 4374. (c) Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka,
A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc.
Jpn. 1976, 49, 1958.
(19) (a) Yamamura, M.; Moritani, I.; Murahashi, S.-I. J. Organomet. Chem.
1975, 91, C39. (b) Negishi, E.; Baba, S. J. Chem. Soc., Chem. Commun.
1976, 596. (c) Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729. (c)
Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821. (d)
Negishi, E.; van Horn, D. E. J. Am. Chem. Soc. 1977, 99, 3168.
(20) (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487. (b) Tamura,
M.; Kochi, J. Synthesis 1971, 303. (c) Neumann, S. M.; Kochi, J. K. J.
Org. Chem. 1975, 40, 599. (d) Smith, R. S.; Kochi, J. K. J. Org. Chem.
1976, 41, 502. (e) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351.
(21) (a) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199. (b) Cahiez, G.;
Marquais, S. Pure Appl. Chem. 1996, 68, 53. (c) Dohle, W.; Kopp, F.;
Cahiez, G.; Knochel, P. Synlett 2001, 1901. (d) Molander, G. A.; Rahn, B.
J.; Shubert, D. C.; Bonde, S. E. Tetrahedron Lett. 1983, 24, 5449. (e)
Fu¨rstner, A.; Brunner, H. Tetrahedron Lett. 1996, 37, 7009. (f) Fakhakh,
M. A.; Franck, X.; Hocquemiller, R.; Figade`re, B. J. Organomet. Chem.
2001, 624, 131. (g) Brinker, U. H.; Ko¨nig, L. Chem. Ber. 1983, 116, 882.
(h) Walborsky, H. M.; Banks, R. B. J. Org. Chem. 1981, 46, 5074.
(22) (a) Fabre, J.-L.; Julia, M.; Verpeaux, J.-N. Tetrahedron Lett. 1982, 23,
2469. (b) Fabre, J.-L.; Julia, M.; Verpeaux, J.-N. Bull. Soc. Chim. Fr. 1985,
772. (c) Alvarez, E.; Cuvigny, T.; Herve´ du Penhoat, C.; Julia, M.
Tetrahedron 1988, 44, 111. (d) Alvarez, E.; Cuvigny, T.; Herve´ du Penhoat,
C.; Julia, M. Tetrahedron 1988, 44, 119.
Results and Discussion
Organometallic Background. Modern cross-coupling chem-
istry emerged in 1972, when Corriu et al. and Kumada et al.
independendly described nickel-catalyzed reactions of Grignard
reagents with alkenyl- and aryl halides.18 The advantages gained
upon replacing nickel by palladium have been discovered shortly
thereafter.19 These seminal disclosures, however, had been
(14) (a) Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley: New York, 2002. (b) Tsuji, J. Palladium Reagents
and Catalysts: InnoVations in Organic Synthesis; Wiley: New York, 1996.
(c) Trost, B. M.; Verhoeven, T. R. In ComprehensiVe Organometallic
Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon:
Oxford, U.K., 1982; Vol. 8, p 799.
(15) (a) Grushin, V. V.; Alper, H. Top. Organomet. Chem. 1999, 3, 193. (b)
Stu¨rmer, R. Angew. Chem., Int. Ed. 1999, 38, 3307.
(16) See the following for leading references and literature cited therein: (a)
Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 9550. (b) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am.
Chem. Soc. 1998, 120, 9722. (c) Singer, R. A.; Buchwald, S. L. Tetrahedron
Lett. 1999, 40, 1095. (d) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem.
Soc. 2000, 122, 4020. (e) Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
2719. (f) Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am. Chem. Soc.
1999, 121, 2123. (g) Fu¨rstner, A.; Leitner, A. Synlett 2001, 290. (h) Zapf,
A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153. (i)
Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc.
2000, 122, 1360. (j) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J.
Org. Chem. 1999, 64, 3804. (k) Herrmann, W. A.; Reisinger, C.-P.; Spiegler,
M. J. Organomet. Chem. 1998, 557, 93. (l) Weskamp, T.; Bo¨hm, V. P.
W.; Herrmann, W. A. J. Organomet. Chem. 1999, 585, 348. (m) Gsto¨ttmayr,
C. W. K.; Bo¨hm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A.
Angew. Chem., Int. Ed. 2002, 41, 1363. (n) Huang, J.; Nolan, S. P. J. Am.
Chem. Soc. 1999, 121, 9889. (o) Lee, H. M.; Nolan, S. P. Org. Lett. 2000,
2, 2053. (p) Lipshutz, B. H. AdV. Synth. Catal. 2001, 343, 313. (q) Bei,
X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen, J. L. J. Org.
Chem. 1999, 64, 6797. (r) Reetz, M. T.; Breinbauer, R.; Wanninger, K.
Tetrahedron Lett. 1996, 37, 4499. (s) LeBlond, C. R.; Andrews, A. T.;
Sun, Y.; Sowa, J. R., Jr. Org. Lett. 2001, 3, 1555. (t) Bedford, R. B.; Cazin,
C. S. J. Chem. Commun. 2001, 1540. (u) Liu, S.-Y.; Choi, M. J.; Fu, G. C.
Chem. Commun. 2001, 2408. (v) Li, G. Y.; Zheng, G.; Noonan, A. F. J.
Org. Chem. 2001, 66, 8677. (w) Botella, L.; Na´jera, C. Angew. Chem.,
Int. Ed. 2002, 41, 179. (x) Li, G. Y.; Marshall, W. J. Organometallics
2002, 21, 590.
(23) (a) Percival, W. C.; Wagner, R. B.; Cook, N. C. J. Am. Chem. Soc. 1953,
75, 3731. (b) Fiandanese, V.; Marchese, G.; Martina, V.; Ronzini, L.
Tetrahedron Lett. 1984, 25, 4805. (c) Dell’Anna, M. M.; Mastrorilli, P.;
Nobile, C. F.; Marchese, G.; Taurino, M. R. J. Mol. Catal. A: Chem. 2000,
161, 239. (d) Reddy, C. K.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1996,
35, 1700. (e) Ritter, K.; Hanack, M. Tetrahedron Lett. 1985, 26, 1285. (f)
Cardellicchio, C.; Fiandanese, V.; Marchese, G.; Ronzini, L. Tetrahedron
Lett. 1985, 26, 3595. (g) Cardellicchio, C.; Fiandanese, V.; Marchese, G.;
Ronzini, L. Tetrahedron Lett. 1987, 28, 2053.
(24) (a) Yanagisawa, A.; Nomura, N.; Yamamoto, H. Tetrahedron 1994, 50,
6017. (b) Yanagisawa, A.; Nomura, N.; Yamamoto, H. Synlett 1991, 513.
(25) Further iron-catalyzed reactions comprise mainly carbometalation processes;
see the following for leading references and literature cited therein: (a)
Hojo, M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba, Y.; Hosomi, A.
Angew. Chem., Int. Ed. 2001, 40, 621. (b) Nakamura, M.; Hirai, A.;
Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978. (c) See also: Reetz, M.
T.; Stanchev, S. J. Chem. Soc., Chem. Commun. 1993, 328.
(26) After publication of our preliminary communication (ref 17), a report on
iron-catalyzed cross-coupling reactions with a small set of aryl bromides
and one aryl chloride has been published, cf.: Quintin, J.; Franck, X.;
Hocquemiller, R.; Figade`re, B. Tetrahedron Lett. 2002, 43, 3547.
(27) (a) Yamamoto, A. J. Organomet. Chem. 2000, 600, 159. (b) Amatore, C.;
Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 1670. (c) Farina, V.;
Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585. (d) Casado, A. L.; Espinet,
P.; Gallego, A. M. J. Am. Chem. Soc. 2000, 122, 11771 and literature cited
therein.
(28) Lehr, G. F.; Lawler, R. G. J. Am. Chem. Soc. 1984, 106, 4048.
(29) Kauffmann, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 386 and literature
cited therein.
(17) For a preliminary communication, see: Fu¨rstner, A.; Leitner, A. Angew.
Chem., Int. Ed. 2002, 41, 609.
9
J. AM. CHEM. SOC. VOL. 124, NO. 46, 2002 13857