First author et al.
Report
Rev. 2008, 108, 2051-2063. (d) Campbell, K.; Kuehl, C. J.; Ferguson,
[5] (a) Liang, Q.; Osten, K. M.; Song, D. Iron-Catalyzed gem-Specific
M. J.; Stang, P. J.; Tykwinski, R. R. Coordination-Driven
Dimerization of Terminal Alkynes. Angew. Chem. Int. Ed. 2017, 56,
6317-6320. (b) Liang, Q.; Sheng, K.; Salmon, A.; Zhou, V. Y.; Song, D.
Active Iron(II) Catalysts toward gem-Specific Dimerization of
Terminal Alkynes. ACS. Catal. 2019, 9, 810-818.
Self-Assembly: Solids with Bidirectional Porosity. J. Am. Chem. Soc.
2002, 124, 7266-7267. (e) Nicolaou, K. C.; Dai, W.-M.; Tsay, S.-C.;
Estevez, V. A.; Wrasidlo, W. Designed Enediynes: A New Class of
DNA-Cleaving Molecules with Potent and Selective Anticancer
Activity. Science 1992, 256, 1172-1178. (f) Goldberg, I. H. Mechanism
of Neocarzinostatin Action: Role of DNA Microstructure in
Determination of Chemistry of Bistranded Oxidative Damage. Acc.
Chem. Res. 1991, 24, 191-198. (g) Kim, H.; Lee, H.; Lee, D.; Kim, S.;
Kim, D. Asymmetric Total Syntheses of (+)-3-(Z)-Laureatin and
(+)-3-(Z)-Isolaureatin by “Lone Pair-Lone Pair Interaction-Controlled”
Isomerization. J. Am. Chem. Soc. 2007, 129, 2269-2274. (h) Barday,
M.; Ho, K. Y. T.; Halsall, C. T.; Aïssa, C. Regioselective Synthesis of
3-Hydroxy-4,5-alkyl-Substituted Pyridines Using 1,3-Enynes as
Alkynes Surrogates. Org. Lett. 2016, 18, 1756-1759. (i) Kumar, R.;
Tamai, E.; Ohnishi, A.; Nishimura, A.; Hoshimoto, Y.; Ohashi, M.;
Ogoshi, S. Nickel-Catalyzed Enantioselective Synthesis of
Cyclobutenes via [2 + 2] Cycloaddition of α,β-Unsaturated Carbonyls
with 1,3-Enynes. Synthesis 2016, 48, 2789-2794. (j) McGee, P.;
Bétournay, G.; Barabé, F.; Barriault, L. A 11-Steps Total Synthesis of
Magellanine through a Gold(I)-Catalyzed Dehydro Diels–Alder
Reaction. Angew. Chem. Int. Ed. 2017, 56, 6280-6283. (k) Zhou, X.;
Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. Silver-Catalysed
Tandem Hydroamination and Cyclization of
[6] Storey, C. M.; Gyton, M. R.; Andrew, R. E.; Chaplin, A. B. Terminal
Alkyne Coupling Reactions through a Ring: Mechanistic Insights and
Regiochemical Switching. Angew. Chem. Int. Ed. 2018, 57,
12003-12006.
[7] (a) Sun, S.; Kroll, J.; Luo, Y.; Zhang, L. Gold-Catalyzed Regioselective
Dimerization of Aliphatic Terminal Alkynes. Synlett 2012, 23, 54-56.
(b) Odabachian, Y.; Le Goff, X. F.; Gagosz, F. An Unusual Access to
Medium Sized Cycloalkynes by a New Gold(I)-Catalysed
Cycloisomerisation of Diynes. Chem. Eur. J. 2009, 15, 8966-8970.
[8] Batrice, R. J.; McKinven, J.; Arnold, P. L.; Eisen, M. S. Selective
Oligomerization and [2 + 2 + 2] Cycloaddition of Terminal Alkynes
from Simple Actinide Precatalysts. Organometallics 2015, 34,
4039-4050.
[9] (a) Gao, Z.; Fletcher, S. P. Construction of β to Carbonyl Stereogenic
Centres by Asymmetric 1,4-Addition of Alkylzirconocenes to
Dienones and Ynenones. Chem. Commun. 2018, 54, 3601-3604. (b)
Yan, W.; Ye, X.; Akhmedov, N. F.; Petersen, J. L.; Shi, X.
2-Trifluoromethyl-1,3-Enynes with Primary Amines: A Modular Entry
to 4-Trifluoromethyl-3-Pyrrolines. Chem. Commun. 2017, 53,
1084-1087.
1,2,3-Triazole: Unique Ligand in Promoting Iron-Catalyzed Propargyl
Alcohol Dehydration. Org. Lett. 2012, 14, 2358-2361. (c) Han, S.; Kim,
H,-S.; Zhang, M.; Xia, Y.; Lee, S. Ni/Cu-Catalyzed Decarboxylative
Addition of Alkynoic Acids to Terminal Alkynes for the Synthesis of
gem-1,3-Enynes. Org. Lett. 2019, 21, 5426-5431.
[3] (a) Batrice, R. J.; McKinven, J.; Arnold, P. L.; Eisen, M. S. Selective
Oligomerization and [2 + 2 + 2] Cycloaddition of Terminal Alkynes
from Simple Actinide Precatalysts. Organometallics 2015, 34,
4039-4050. (b) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.;
Miyamoto, T. Novel Z-Selective Head-to-Head Dimerization of
Terminal Alkynes Catalyzed by Lanthanide Half-Metallocene
Complexes. J. Am. Chem. Soc. 2003, 125, 1184-1185. (c) Richard, M. E.;
Reese, K. P.; Stone, J. J.; Pickett, P. D.; Tillman, E. S.; Stockland, R. A.
Probing the Steric Limits of Rhodium Catalyzed
[10] Barluenga, J.; González, J. M.; Llorente, I.; Campos, P. J. Auch
1-Lodalkine Können Dimerisiert Werden: Eine Neue
Kopf-Schwanz-Verknüpfung. Angew. Chem. 1993, 105, 928-929.
[11] Mader, S.; Molinari, L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K.
Dual Gold-Catalyzed Head-to-Tail Coupling of Iodoalkynes. Chem.
Eur. J. 2015, 21, 3910-3913.
Hydrophosphinylation. P-H Addition vs.
[12] Karapala, V. K.; Ship, H.-P.; Han, C.-C. Cascade and Effective
Syntheses of Functionalized Tellurophenes. Org. Lett. 2018, 20,
1550-1554.
Dimerization/Oligomerization/Polymerization. J. Organometal. Chem.
2011, 696, 123-129. (d) Ventre, S.; Derat, E.; Amatore, M.; Aubert, C.;
Petit, M. Hydrido-Cobalt Catalyst as a Selective Tool for the
Dimerisation of Arylacetylenes: Scope and Theoretical Studies. Adv.
Synth. Catal. 2013, 355, 2584-2590.
[13] Liu, P.-H.; Li, L.; Webb, J. A.; Zhang, Y.; Goroff, N. S.
Tetrabromobutatriene:ꢀ Completing the Perhalocumulene Series.
Org. Lett. 2004, 6, 2081-2083.
[4] (a) Trost, B. M.; Chan, C.; Rühter, G. Metal-Mediated Approach to
Enynes. J. Am. Chem. Soc. 1987, 109, 3486-3487. (b) Trost, B. M.;
Sorum, M. T.; Chan, C.; Harms, A. E.; Rühter, G. Palladium-Catalyzed
Additions of Terminal Alkynes to Acceptor Alkynes. J. Am. Chem. Soc.
1997, 119, 698-708. (c) Chen, T.; Guo, C.; Goto, M.; Han, L.-B. A
Brønsted Acid-Catalyzed Generation of Palladium Complexes:
Efficient Head-to-Tail Dimerization of Alkynes. Chem. Commun. 2013,
49, 7498-7500. (d) Xi, C.; Du, W.; Zeng, Y.; Dai, B.; Guo, H. Reactivity
Switch Enabled by Counterion: Highly Chemoselective Dimerization
and Hydration of Terminal Alkynes. Org. Lett. 2014, 16, 948-951.
[14] For selected reviewers and examples, see: (a) Ravelli, D.; Protti, S.;
Fagnoni, M. Carbon–Carbon Bond Forming Reactions via
Photogenerated Intermediates. Chem. Rev. 2016, 116, 9850-9913.
(b) Kärkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Photochemical
Approaches to Complex Chemotypes: Applications in Natural Product
Synthesis. Chem. Rev. 2016, 116, 9683-9747. (c) Skubi, K. L.; Blum, T.
R.; Yoon, T. P. Dual Catalysis Strategies in Photochemical Synthesis.
Chem. Rev. 2016, 116, 10035-10074. (d) Prier, C. K.; Rankic, D. A.;
MacMillan, D. W. C. Visible Light Photoredox Catalysis with
Transition Metal Complexes: Applications in Organic Synthesis.
Chem. Rev. 2013, 113, 5322-5363. (e) Empel, C.; Patureau, F. W.;
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.